Skip to main content
Log in

Application of Enhanced Gravity Separators for Fine Particle Processing: An Overview

  • Review Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Beneficiation of low-grade ore is of critical importance in order to meet the growing demand for coal and mineral industries. But, low-grade ores require fine grinding to obtain the desired liberation of valuable minerals. As a result, production of fine particles makes the beneficiation process difficult through conventional gravity separators. Hence, alternative beneficiation techniques are being investigated for upgradation of metal values from low-grade ores. The gravitational force effecting the separation is replaced by the centrifugal force to usher in enhanced gravity separators. The objective of the present paper is to summarize the applicability aspect of enhanced gravity separators for different mineral systems including non-ferrous, precious, ferrous, and industrial minerals. These mineral systems include run off mine ore, secondary products like tailings and plant slags, etc. For this purpose, the design, operational features, types, and separation mechanism of enhanced gravity separators, such as Falcon concentrator, Knelson concentrator, multi-gravity separator (MGS), and Kelsey Jig, are discussed. Based on our review, research scope and future possibilities of enhanced gravity separators are also proposed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dehaine Q, Foucaud Y, Kroll-Rabotin JS, Filippov LO (2019) Experimental investigation into the kinetics of Falcon UF concentration: implications for fluid dynamic-based modelling. Sep Purif Technol 215:590–601. https://doi.org/10.1016/j.seppur.2019.01.048

    Article  CAS  Google Scholar 

  2. Das A, Sarkar B (2018) Advanced gravity concentration of fine particles: a review. Miner Process Extr Metall Rev 39:359–394. https://doi.org/10.1080/08827508.2018.1433176

    Article  Google Scholar 

  3. Ma L, Wei L, Pei X, Zhu X, Xu D (2019) CFD-DEM simulations of particle separation characteristic in centrifugal compounding force field. Powder Technol 343:11–18. https://doi.org/10.1016/j.powtec.2018.11.016

    Article  CAS  Google Scholar 

  4. Chen Q, Yang HY, Tong LL, Niu HQ, Zhang FS, Chen GM (2020) Research and application of a Knelson concentrator: a review. Miner Eng. https://doi.org/10.1016/j.mineng.2020.106339

    Article  Google Scholar 

  5. Chen Q, Yang H, Tong L, Lin Y, Ali A (2020) Ring-by-ring analysis and models of retained mass of quartz in a laboratory Knelson Concentrator. Miner Eng 149:106236. https://doi.org/10.1016/j.mineng.2020.106236

    Article  CAS  Google Scholar 

  6. Gupta A, Yan D (2016) Mineral processing design and operations: an introduction, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  7. Yang X (2018) Beneficiation studies of tungsten ores—a review. Miner Eng 125:111–119. https://doi.org/10.1016/j.mineng.2018.06.001

    Article  CAS  Google Scholar 

  8. Katwika CN, Kime M, Kalenga PNM, Mbuya BI, Mwilen TR (2018) Application of Knelson concentrator for beneficiation of copper—cobalt ore tailings. Miner Process Extr Metall Rev 40:1–11. https://doi.org/10.1080/08827508.2018.1481057

    Article  CAS  Google Scholar 

  9. Peer F, Mongwe A, Van Heerden JHP (2002) A preliminary investigation into the metallurgical efficiency of an enhanced gravity separator. J South Afr Inst Min Metall 102:251

    Google Scholar 

  10. Pattanaik A, Venugopal R (2019) Role of surfactants in mineral processing: an overview. In: Dutta A (ed) Surfactants and detergents. IntechOpen, London, pp 1–17. https://doi.org/10.5772/intechopen.85947

    Chapter  Google Scholar 

  11. Falconer A (2003) Gravity separation: old technique/new methods. Phys Sep Sci Eng 12:31–48. https://doi.org/10.1080/1478647031000104293

    Article  CAS  Google Scholar 

  12. Majumder AK, Barnwal JP (2006) Modeling of enhanced gravity concentrators—present status. Miner Process Extr Metall Rev 27:61–86. https://doi.org/10.1080/08827500500339307

    Article  CAS  Google Scholar 

  13. Wills BA, Finch JA (2016) Wills’ mineral processing technology. Butterworth-Heinemann, Oxford. https://doi.org/10.1016/b978-0-08-097053-0.00001-7

    Book  Google Scholar 

  14. Abaka-Wood GB, Quast K, Zanin M, Addai-Mensah J, Skinner W (2019) A study of the feasibility of upgrading rare earth elements minerals from iron-oxide-silicate rich tailings using Knelson concentrator and Wilfley shaking table. Powder Technol 344:897–913. https://doi.org/10.1016/j.powtec.2018.12.005

    Article  CAS  Google Scholar 

  15. Luttrell GH, Honaker RQ, Phillips DI (1995) Enhanced gravity separators: new alternatives for fine coal cleaning. Intertec Presentations, Deland

    Google Scholar 

  16. Honaker RQ, Wang D, Ho K (1996) Application of the falcon concentrator for fine coal cleaning. Miner Eng 9:1143–1156. https://doi.org/10.1016/0892-6875(96)00108-2

    Article  CAS  Google Scholar 

  17. El-Midany AA, Ibrahim SS (2011) Does calcite content affect its separation from celestite by Falcon concentrator? Powder Technol 213:41–47. https://doi.org/10.1016/j.powtec.2011.07.003

    Article  CAS  Google Scholar 

  18. Liu Q, Cui Z, Etsell TH (2006) Pre-concentration and residual bitumen removal from Athabasca oilsands froth treatment tailings by a Falcon centrifugal concentrator. Int J Miner Process. https://doi.org/10.1016/j.minpro.2005.10.010

    Article  Google Scholar 

  19. Zhu X, Tao Y, Sun Q (2017) Separation of flocculated ultrafine coal by enhanced gravity separator. Part Sci Technol 35:393–399. https://doi.org/10.1080/02726351.2016.1163302

    Article  CAS  Google Scholar 

  20. Jambal D, Kim BG, Jeon HS, Lee JH (2017) Physical separation using an autogenous medium on coal. Sep Sci Technol 52:958–964. https://doi.org/10.1080/01496395.2016.1254660

    Article  CAS  Google Scholar 

  21. Ferrara G (1960) A process of centrifugal separation using a rotating tube. In: Proceedings of 5th International Congress, Institute of Mining and Metallurgy, London

  22. Escudié R, Epstein N, Grace JR, Bi HT (2006) Layer inversion phenomenon in binary-solid liquid-fluidized beds: Prediction of the inversion velocity. Chem Eng Sci 61:6667–6690. https://doi.org/10.1016/j.ces.2006.06.008

    Article  CAS  Google Scholar 

  23. Tripathy A, Bagchi S, Biswal SK, Meikap BC (2017) Study of particle hydrodynamics and misplacement in liquid–solid fluidized bed separator. Chem Eng Res Des 117:520–532. https://doi.org/10.1016/j.cherd.2016.11.009

    Article  CAS  Google Scholar 

  24. Coulter T, Subasinghe GKN (2005) A mechanistic approach to modelling Knelson concentrators. Miner Eng 18:9–17. https://doi.org/10.1016/j.mineng.2004.06.035

    Article  CAS  Google Scholar 

  25. Uslu T, Sahinoglu E, Yavuz M (2012) Desulphurization and deashing of oxidized fine coal by Knelson concentrator. Fuel Process Technol 101:94–100. https://doi.org/10.1016/j.fuproc.2012.04.002

    Article  CAS  Google Scholar 

  26. Mcleavy M, Klein B, Grewal I (2001) Knelson continuous variable discharge concentrator: analysis of operating variables. In: International Heavy Minerals Conference, pp 119–125

  27. Koppalkar S (2009) Effect of operating variables in knelson concentrators: a pilot-scale study, A thesis submitted to the Faculty of Graduate Studies and research in partial fulfillment of the requirements of the Degree of Philosophy, McGill University.

  28. Koppalkar S, Bouajila A, Gagnon C, Noel G (2011) Understanding the discrepancy between prediction and plant GRG recovery for improving the gold gravity performance. Miner Eng 24:559–564. https://doi.org/10.1016/j.mineng.2010.09.007

    Article  CAS  Google Scholar 

  29. Laplante A, Shu Y, Marios J (1996) Experimental characterization of a centrifugal separator. Can Metall Q 35:23–29. https://doi.org/10.1016/0008-4433(95)00031-3

    Article  Google Scholar 

  30. Fatahi MR, Farzanegan, (2017) A DEM simulation of laboratory Knelson concentrator to study the effects of feed properties and operating parameters. Adv Powder Technol 28:1443–1458. https://doi.org/10.1016/j.apt.2017.03.011

    Article  Google Scholar 

  31. Ghaffari A, Farzanegan A (2017) An investigation on laboratory Knelson Concentrator separation performance: part 1: retained mass modelling. Miner Eng 112:57–67. https://doi.org/10.1016/j.mineng.2017.07.006

    Article  CAS  Google Scholar 

  32. Ghaffari A, Farzanegan A (2017) An investigation on laboratory Knelson Concentrator separation performance: part 2: two-component feed separation modelling. Miner Eng 112:114–124. https://doi.org/10.1016/j.mineng.2018.03.043

    Article  CAS  Google Scholar 

  33. Falcon UF Concentrator (2018) https://seprosystems.com/wp-content/uploads/2016/08/Falcon_UF_Concentrator_2018.pdf. Accessed 16 Mar 2020

  34. Kroll-Rabotin JS, Bourgeois F, Climent E (2013) Physical analysis and modeling of the Falcon concentrator for beneficiation of ultrafine particles. Int J Miner Process 121:39–50. https://doi.org/10.1016/j.minpro.2013.02.009

    Article  CAS  Google Scholar 

  35. Honaker RQ (1998) High capacity fine coal cleaning using an enhanced gravity concentrator. Miner Eng 11:1191–1199. https://doi.org/10.1016/S0892-6875(98)00105-8

    Article  CAS  Google Scholar 

  36. Buonvino M (1993) A study of the falcon concentrator. Ph.D. thesis. McGi11 University, Montreal. https://doi.org/10.1179/cmq.1994.33.4.279

  37. Zhu XN, Tao YJ, Sun QX, Man ZP (2017) Enrichment and migration regularity of fine coal particles in enhanced gravity concentrator. Int J Miner Process 163:48–54. https://doi.org/10.1016/j.minpro.2017.04.007

    Article  CAS  Google Scholar 

  38. Kroll-Rabotin JS, Bourgeois F, Climent E (2012) Experimental validation of a fluid dynamics based model of the UF Falcon concentrator in the ultrafine range. Sep Purif Technol 92:129–135. https://doi.org/10.1016/j.seppur.2011.10.029

    Article  CAS  Google Scholar 

  39. Traore A, Conil P, Houot R, Save M (1995) An evaluation of the Mozley MGS for fine particle gravity separation. Miner Eng 8:767–778

    Article  CAS  Google Scholar 

  40. Çiçek T, Cöcen I (2002) Applicability of Mozley multigravity separator (MGS) to fine chromite tailings of Turkish chromite concentrating plants. Miner Eng 15:91–93. https://doi.org/10.1016/S0892-6875(01)00195-9

    Article  Google Scholar 

  41. Concha F, Almendra ER (1979) Settling velocities of particulate systems, 2. Settling velocities of suspensions of spherical particles. Int J Miner Process 6:31–41. https://doi.org/10.1016/0301-7516(79)90030-9

    Article  Google Scholar 

  42. Singh RK, Das A (2013) Analysis of separation response of Kelsey centrifugal jig in processing fine coal. Fuel Process Technol 115:71–78. https://doi.org/10.1016/j.fuproc.2013.04.005

    Article  CAS  Google Scholar 

  43. Meza LA, Hartmann W, Escobar CA, Medellin AA (1994) Recovery of placer gold using the Knelson Concentrator. In: Innovations in mineral processing conference sudbury, pp 339–347

  44. Delfini M, Manni A, Massacci P (2000) Gold recovery from jewellery waste. Miner Eng 13:663–666. https://doi.org/10.1016/S0892-6875(00)00048-0

    Article  CAS  Google Scholar 

  45. Olyaei Y, Aghazadeh S, Gharabaghi M, Mamghaderi H, Mansouri J (2016) Gold, mercury, and silver extraction by chemical and physical separation methods. Rare Met Mater Eng 45:2784–2789. https://doi.org/10.1016/S1875-5372(17)30040-1

    Article  CAS  Google Scholar 

  46. Knelson B (1992) The Knelson concentrator. metamorphosis from crude beginning to sophisticated world wide acceptance. Miner Eng 5:1091–1097

    Article  CAS  Google Scholar 

  47. Sakuhuni G, Klein B, Altun NE (2015) A hybrid evolutionary performance improvement procedure for optimisation of continuous variable discharge concentrators. Sep Purif Technol 145:130–138. https://doi.org/10.1016/j.seppur.2015.02.030

    Article  CAS  Google Scholar 

  48. Lins FF, Veiga MM, Stewart JA, Papalia A, Papalia R (1992) Performance of a new centrifuge (Falcon) in concentrating a gold ore from texada island, B.C., Canada. Miner Eng 5:1113–1121. https://doi.org/10.1016/0892-6875(92)90153-Z

    Article  CAS  Google Scholar 

  49. Alp I, Celep O, Deveci H, Vicil M (2008) Recovery of gold from a free-milling ore by centrifugal gravity separator. Iran J Sci Technol Trans B Eng 32:67–71

    CAS  Google Scholar 

  50. Laplante AR, Gray S (2005) Advances in gravity gold technology. Dev Miner Process Miner Eng 15:280–307. https://doi.org/10.1016/S0167-4528(05)15013-3

    Article  Google Scholar 

  51. Laplante AR, Shu Y (1993) A comparative study of two centrifugal concentrators. In: 25th annual meeting of the Canadian minerals processors, p. 18

  52. Xiao Z, Laplante AR, Finch JR (2009) Quantifying the content of gravity recoverable platinum group minerals in ore samples. Miner Eng 22:304–310. https://doi.org/10.1016/j.mineng.2008.08.009

    Article  CAS  Google Scholar 

  53. Jena MS, Mohanty JK, Sahu P, Venugopal R, Mandre NR (2017) Characterization and pre-concentration of low grade PGE ores of boula area, odisha using gravity concentration methods. Trans Indian Inst Met 70:287–302. https://doi.org/10.1007/s12666-016-0998-1

    Article  CAS  Google Scholar 

  54. Xiao Z, Laplante AR (2004) Characterizing and recovering the platinum group minerals—a review. Miner Eng 17:961–979. https://doi.org/10.1016/j.mineng.2004.04.001

    Article  CAS  Google Scholar 

  55. Kademli M, Aydogan NA (2019) An extraction of copper from recycling plant slag by using falcon concentrator. Gosper Suro Miner 35:117–128. https://doi.org/10.24425/gsm.2019.128202

    Article  CAS  Google Scholar 

  56. Greenwood M, Langlois R, Waters KE (2013) The potential for dry processing using a Knelson Concentrator. Miner Eng 45:44–46. https://doi.org/10.1016/j.mineng.2013.01.014

    Article  CAS  Google Scholar 

  57. Zhou M, Kökkiliç O, Langlois R, Waters KE (2016) Size-by-size analysis of dry gravity separation using a 3-in. Knelson Concentrator. Miner Eng 91:42–54. https://doi.org/10.1016/j.mineng.2015.10.022

    Article  CAS  Google Scholar 

  58. Foucaud Y, Dehaine Q, Filippov LO, Filippova LV (2019) Application of Falcon centrifuge as a cleaner alternative for complex tungsten ore processing. Minerals 9:448. https://doi.org/10.3390/min9070448

    Article  CAS  Google Scholar 

  59. Clemente D, Newling P, Botelho de Sousa A, LeJeune G, Barber SP, Tucker P (1993) Reprocessing slimes tailings from a tungsten mine. Miner Eng 6:831–839. https://doi.org/10.1016/0892-6875(93)90057-T

    Article  CAS  Google Scholar 

  60. Patil DP, Govindarajan B, Rao TC, Kohad VP, Gaur RK (1999) Plant trials with the multi gravity separator for the reduction of graphite. Miner Eng 12:1127–1131. https://doi.org/10.1016/S0892-6875(99)00097-7

    Article  CAS  Google Scholar 

  61. Udaya Bhaskar K, Govindarajan B, Barnwal JP, Venugopal R, Jakhu MR, Rao TC (2002) Performance and modeling studies of an MGS for graphite rejection in a lead concentrate. Int J Miner Process 67:59–70. https://doi.org/10.1016/S0301-7516(02)00017-0

    Article  CAS  Google Scholar 

  62. Egbe E, Mudiare E, Abubakre O, Ogunbajo M (2013) Effectiveness of gravity separation methods for the beneficiation of Baban Tsauni (Nigeria) lead-gold ore. Int J Sci Res Publ 3:2250–3153

    Google Scholar 

  63. Göktepe F (2005) Treatment of lead mine waste by a Mozley multi-gravity separator (MGS). J Environ Manage 76:277–281. https://doi.org/10.1016/j.jenvman.2005.01.026

    Article  CAS  Google Scholar 

  64. Ghorbani Y, Fitzpatrick R, Kinchington M, Rollinson G, Hegarty P (2017) A process mineralogy approach to gravity concentration of tantalum bearing minerals. Minerals. https://doi.org/10.3390/min7100194

    Article  Google Scholar 

  65. Burt RO, Korinek G, Young SR, Deveau C (1995) Ultrafine tantalum recovery strategies. Miner Eng 8:859–870. https://doi.org/10.1016/0892-6875(95)00048-U

    Article  CAS  Google Scholar 

  66. Gupta CK, Krishnamurthy N (1992) Extractive metallurgy of rare earths. Int Mater Rev 37:197–248. https://doi.org/10.1179/imr.1992.37.1.197

    Article  CAS  Google Scholar 

  67. Jordens A, Cheng YP, Waters KE (2013) A review of the beneficiation of rare earth element bearing minerals. Miner Eng 41:97–114. https://doi.org/10.1016/j.mineng.2012.10.017

    Article  CAS  Google Scholar 

  68. Jordens A, Marion C, Langlois R, Grammatikopoulos T, Rowson NA, Waters KE (2016) Beneficiation of the Nechalacho rare earth deposit. Part 1: gravity and magnetic separation. Miner Eng 99:111–122. https://doi.org/10.1016/j.mineng.2016.04.006

    Article  CAS  Google Scholar 

  69. Marion C, Grammatikopoulos T, Rudinsky S, Langlois R, Williams H, Chu P, Awais M, Gauvin R, Rowson NA, Waters KE (2018) A mineralogical investigation into the pre-concentration of the Nechalacho deposit by gravity separation. Miner Eng 121:1–13. https://doi.org/10.1016/j.mineng.2018.02.008

    Article  CAS  Google Scholar 

  70. Ozbayoǧlu G, Atalay MO (2000) Beneficiation of bastnaesite by a multi-gravity separator. J Alloys Compd 303–304:520–523. https://doi.org/10.1016/S0925-8388(00)00639-3

    Article  Google Scholar 

  71. Jordens A, Sheridan RS, Rowson NA, Waters KE (2014) Processing a rare earth mineral deposit using gravity and magnetic separation. Miner Eng 62:9–18. https://doi.org/10.1016/j.mineng.2013.09.011

    Article  CAS  Google Scholar 

  72. Guy PJ, Bruckard WJ, Vaisey MJ (2000) Beneficiation of Mt weld rare earth oxides by gravity concentration, flotation and magnetic separation. In: Proceedings of the Seventh Mill Operators’ Conference

  73. Marion C, Williams H, Langlois R, Kökkılıç O, Coelho F, Awais M, Rowson NA, Waters KE (2017) The potential for dense medium separation of mineral fines using a laboratory Falcon Concentrator. Miner Eng 105:7–9. https://doi.org/10.1016/j.mineng.2016.12.008

    Article  CAS  Google Scholar 

  74. Xia L, Hart B, Douglas K (2015) The role of citric acid in the flotation separation of rare earth from the silicates. Miner Eng 74:123–129. https://doi.org/10.1016/j.mineng.2015.02.008

    Article  CAS  Google Scholar 

  75. Angadi SI, Eswaraiah C, Jeon HS, Mishra BK, Miller JD (2017) Selection of gravity separators for the beneficiation of the uljin tin ore. Miner Process Extr Metall Rev 38:54–61. https://doi.org/10.1080/08827508.2016.1262856

    Article  CAS  Google Scholar 

  76. Beniuk VG, Vadeikis CA, Enraght-Moony JN (1994) Centrifugal jigging of gravity concentrate and tailing at renison limited. Miner Eng 7:577–589. https://doi.org/10.1016/0892-6875(94)90091-4

    Article  CAS  Google Scholar 

  77. Özgen S (2017) Purification with Falcon gravity concentrator processing of low-grade bentonites and modeling. Part Sci Technol 35:346–354. https://doi.org/10.1080/02726351.2016.1160460

    Article  CAS  Google Scholar 

  78. Boylu F, Hojiyev R, Ersever G, UlcayY ÇMS (2012) Production of ultrapure bentonite clays through centrifugation techniques. Sep Sci Technol 47:842–849. https://doi.org/10.1080/01496395.2011.634475

    Article  CAS  Google Scholar 

  79. Gence N (2001) Enrichment of magnesite ore. J Eng Archchit Faculty Osmangazi Univ 14:1–10

    Google Scholar 

  80. Erdogan N (2017) The most suitable beneficiation method for magnesite ore. Res Gate 2016:1–8

    Google Scholar 

  81. Rao GV, Markandeya R, Kumar R (2016) Optimisation of process variables for recovery of iron values from sub grade iron ore by using enhanced gravity separation. Int J Eng Res 5:2900–2909. https://doi.org/10.17577/ijertv5is010617

    Article  Google Scholar 

  82. Rao GV, Markandeya R, Kumar R (2017) Feasibility studies for production of pellet grade concentrate from sub grade iron ore using multi gravity separator. J Inst Eng Ser D 99:63–70. https://doi.org/10.1007/s40033-017-0147-y

    Article  CAS  Google Scholar 

  83. Chaurasia RC, Nikkam S (2017) Beneficiation of low-grade iron ore fines by multi-gravity separator (MGS) using optimization studies. Part Sci Technol 35:45–53. https://doi.org/10.1080/02726351.2015.1124161

    Article  CAS  Google Scholar 

  84. Chen L, Ren N, Xiong D (2008) Experimental study on performance of a continuous centrifugal concentrator in reconcentrating fine hematite. Int J Miner Process 87:9–16. https://doi.org/10.1016/j.minpro.2008.01.002

    Article  CAS  Google Scholar 

  85. Nayak NP, Pal BK (2013) Separation behaviour of iron ore fines in Kelsey Centrifugal Jig. J Miner Mater Charact Eng 01:85–89. https://doi.org/10.4236/jmmce.2013.13016

    Article  CAS  Google Scholar 

  86. Nayak NP, Pal BK (2013) Beneficiation of banded hematite jasper using Falcon concentrator: an alternative to iron ore resources. Res Open J Miner Min Eng 1:8–14

    Google Scholar 

  87. Farrokhpay S, Filippov L, Fornasiero D (2019) Pre-concentration of nickel in laterite ores using physical separation methods. Miner Eng 141:105892. https://doi.org/10.1016/j.mineng.2019.105892

    Article  CAS  Google Scholar 

  88. Sen GA (2016) Application of full factorial experimental design and response surface methodology for chromite. Minerals. https://doi.org/10.3390/min6010005

    Article  Google Scholar 

  89. Özgen S (2012) Clean chromite production from fine chromite tailings by combination of multi gravity separator and hydrocyclone. Sep Sci Technol 47:1948–1956. https://doi.org/10.1080/01496395.2012.663445

    Article  CAS  Google Scholar 

  90. Tripathy SK, Murthy YR, Tathavadkar V, Denys MB (2012) Efficacy of multi gravity separator for concentrating. Int J Miner Metall 48:39–49

    Google Scholar 

  91. Singh RK, Dey S, Mohanta MK, Das A (2014) Enhancing the utilization potential of a low grade chromite ore through extensive physical separation. Sep Sci Technol 49:1937–1945. https://doi.org/10.1080/01496395.2014.903495

    Article  CAS  Google Scholar 

  92. Aslan N (2008) Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration. Powder Technol 185:80–86. https://doi.org/10.1016/j.powtec.2007.10.002

    Article  CAS  Google Scholar 

  93. Aslan N (2008) Multi-objective optimization of some process parameters of a multi-gravity separator for chromite concentration. Sep Purif Technol 64:237–241. https://doi.org/10.1016/j.seppur.2008.10.004

    Article  CAS  Google Scholar 

  94. Uslu T, Celep O, Savas M (2015) Enrichment of low-grade colemanite concentrate by Knelson Concentrator. J S Afr Inst Miner Metall 115:229–233

    Article  CAS  Google Scholar 

  95. Savas M (2016) Recovery of colemanite from tailing using a knelson concentrator. Physicochem Probl Miner Process 52:1036–1047. https://doi.org/10.5277/ppmp160240

    Article  CAS  Google Scholar 

  96. Aslan N (2007) Modeling and optimization of multi-gravity separator to produce celestite concentrate. Powder Technol 174:127–133. https://doi.org/10.1016/j.powtec.2007.01.007

    Article  CAS  Google Scholar 

  97. Majumder AK, Tiwari V, Barnwal JP (2007) Separation characteristics of coal fines in a Knelson concentrator—a hydrodynamic approach. Int J Coal Prep Util 27:126–137. https://doi.org/10.1080/07349340701249745

    Article  CAS  Google Scholar 

  98. Özgen S, Malkoç Ö, Doǧancik C, Sabah E, Şapçi FO (2011) Optimization of a Multi Gravity Separator to produce clean coal from Turkish lignite fine coal tailings. Fuel 90:1549–1555. https://doi.org/10.1016/j.fuel.2010.11.024

    Article  CAS  Google Scholar 

  99. Öney Ö, Tanrıverdi M (2012) Optimization and modeling of fine coal beneficiation by Knelson concentrator using central composite design (CCD). J Ore Dress 14:11–18

    Google Scholar 

  100. Mohanty MK, Honaker RQ (1999) Evaluation of the altair centrifugal jig for fine coal separation. Coal Prep 20:85–106. https://doi.org/10.1080/07349349908945594

    Article  CAS  Google Scholar 

  101. Mohanty MK, Honaker RQ, Patwardhan A (2002) Altair jig: an in-plant evaluation for fine coal cleaning. Miner Eng 15:157–166. https://doi.org/10.1016/S0892-6875(01)00202-3

    Article  CAS  Google Scholar 

  102. Yerriswamy P, Majumder AK, Barnwal JP, Govindarajan B, Rao TC (2003) Study on Kelsey jig treating indian coal fines. Trans. Inst. Min Metall Sect C Miner Process Extr Metall 112:206–210. https://doi.org/10.1179/037195503225003654

    Article  CAS  Google Scholar 

  103. Boylu F (2013) Modeling of free and hindered settling conditions for fine coal beneficiation through a falcon concentrator. Int J Coal Prep Util 33:277–289. https://doi.org/10.1080/19392699.2013.818986

    Article  CAS  Google Scholar 

  104. Ibrahim SS, El Anadoly BE, Farahat MM, Selim AQ, El-Menshawy AH (2014) Separation of pyritic sulfur from egyptian coal using falcon concentrator. Part Sci Technol 32:588–594. https://doi.org/10.1080/02726351.2014.933458

    Article  CAS  Google Scholar 

  105. Boylu F (2014) Autogenous medium fine coal washing through falcon concentrator. Sep Sci Technol 49:627–633. https://doi.org/10.1080/01496395.2013.861848

    Article  CAS  Google Scholar 

  106. Zhang B, Yang F, Akbari H, Mohanty MK, Brodzik P, Latta P, Hirschi JC (2011) Evaluation of a new fine coal cleaning circuit consisting of a stack sizer and a falcon enhanced gravity concentrator. Int J Coal Prep Util 31:78–95. https://doi.org/10.1080/19392699.2010.537987

    Article  CAS  Google Scholar 

  107. Oruç F, Özgen S, Sabah E (2010) An enhanced-gravity method to recover ultra-fine coal from tailings: Falcon concentrator. Fuel 98:2433–2437. https://doi.org/10.1016/j.fuel.2010.04.009

    Article  CAS  Google Scholar 

  108. Oney O, Samanli S, Niedoba T, Pięta P, Surowiak A (2017) Determination of the important operating variables on cleaning fine coal by knelson concentrator and evaluation of the performance through upgrading curves. Int J Coal Prep Util 40:666–678. https://doi.org/10.1080/19392699.2017.1397641

    Article  CAS  Google Scholar 

  109. Ma L, Wei L, Zhu X, Xu D, Pei X, Xue H (2018) Numerical studies of separation performance of Knelson concentrator for beneficiation of fine numerical studies of separation performance of Knelson concentrator for beneficiation of fine coal. Int J Coal Prep Util. https://doi.org/10.1080/19392699.2018.1434165

    Article  Google Scholar 

  110. Basnayaka L, Albijanic B, Subhasinghe N (2020) Performance evaluation of processing clay-containing ore in Knelson concentrator. Miner Eng 152:106372. https://doi.org/10.1016/j.mineng.2020.106372

    Article  CAS  Google Scholar 

  111. Chen Q, Yang H, Tong L, Liu Z, Chen G, Wang J (2020) Analysis of the operating mechanism in a Knelson concentrator. Miner Eng 158:106547. https://doi.org/10.1016/j.mineng.2020.106547

    Article  CAS  Google Scholar 

  112. Foucaud Y, Filippova I, Dehaine Q, Hubert P, Filippov L (2019) Integrated approach for the processing of a complex tungsten Skarn ore (Tabuaço, Portugal). Miner Eng 143:105896. https://doi.org/10.1016/j.mineng.2019.105896

    Article  CAS  Google Scholar 

  113. Schriner D, Anderson C (2015) Centrifugal concentration of rare earth minerals from calcitic gangue. J Metall Eng. https://doi.org/10.14355/me.2015.04.009

    Article  Google Scholar 

  114. Ibrahim SS, El Kammar AM, Guda AM (2015) Characterization and separation of pyrite from Abu Tartar black shale. Int J Min Sci Technol 2:565–571. https://doi.org/10.1016/j.ijmst.2015.05.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Late Prof. Rayasam Venugopal for his suggestions to improve the manuscript in its initial stage. The corresponding author is thankful to the Director of CSIR-IMMT for his kind permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Jena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

The contributing editor for this article was Grace Ofori-Sarpong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, A., Jena, M.S. & Mandre, N.R. Application of Enhanced Gravity Separators for Fine Particle Processing: An Overview. J. Sustain. Metall. 7, 315–339 (2021). https://doi.org/10.1007/s40831-021-00343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00343-5

Keywords

Navigation