Skip to main content
Log in

Dependence of Variations in Black Carbon Content in the Atmosphere of Moscow on Air Mass Transport Direction

  • OPTICAL MODELS AND DATABASES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Data on black carbon (BC) concentration CBC in the air basin of Moscow, and 5-day back trajectories of air mass motion, obtained in the period of 2003–2014, were used to determine the dependence of variations in black carbon concentration in the air basin of Moscow on the direction of air mass transport, and to determine the black carbon source regions. The 12-year measurements of black carbon concentration in Moscow air are used to show that the СBC variations are determined by the character of the air mass circulation in the troposphere. Measurements of black carbon content in the Moscow air basin in June–September 2019 and 10-day back trajectories of air mass transport were used to study the effect of the latter on the air pollution level in Moscow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. S. Golitsyn, E. I. Grechko, Van, Genchen, Van, Pusai, A. V. Dzhola, A. S. Emilenko, V. M. Kopeikin, V. S. Rakitin, A. N. Safronov, and E. V. Fokeeva, “Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol,” Izv., Atmos. Ocean. Phys. 51 (1), 1–11 (2015).

    Article  Google Scholar 

  2. O. V. Rattigan, A. Carpenter, K. Civerolo, and D. Felton, “Pollutant measurements at near road and urban background sites in New York, USA,” Atmos. Poll. Res. 11 (5), 859–870 (2020).

    Article  Google Scholar 

  3. Wang Yang, Liu Szeling, Shi Peng, Li Yanli, Mu Chao, and Du Ke, “Temporal variation of mass absorption efficiency of black carbon at urban and suburban locations,” Aer. Air Qual. Res. 13 (1), 275–286 (2013).

    Article  Google Scholar 

  4. Quan Jiannong, Dou Youjun, Zhao Xiujuan, Liu Quan, Sun Zhaobin, Pan Yubing, Jia Xingcan, Cheng Zhigang, Ma Pengkun, Su Jie, Xin Jinyuan, and Liu Yangang, “Regional atmospheric pollutant transport mechanisms over the North China Plain driven by topography and planetary boundary layer processes,” Atmos. Environ. 221, 117098 (2020).

    Article  Google Scholar 

  5. O. Alizadeh-Choobari, A. A. Bidokhti, P. Ghafarian, and M. S. Najafi, “Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran,” Atmos. Environ. 141, 443–453 (2016).

    Article  ADS  Google Scholar 

  6. N. Elansky, “Air quality and CO emissions in the Moscow megacity,” Urban Clim., No. 8, 42–56 (2014).

  7. D. P. Gubanova, I. B. Belikov, N. F. Elansky, A. I. Skorokhod, and N. E. Chubarova, “Variations in PM2.5 surface concentration in Moscow according to observations at MSU meteorological observatory,” Atmos. Ocean. Opt. 31 (3), 290–299 (2018).

    Article  Google Scholar 

  8. R. M, Vil’fand, I. N. Kuznetsova, I. Yu. Shalygina, A. M. Zvyagintsev, M. I. Nakhaev, P. V. Zakharova, and V. A. Lapchenko, “Monitoring and forecasting the air quality in the Moscow region,” Biosfera 6 (4), 339–351 (2014).

    Article  Google Scholar 

  9. Risks of Health Problems for Population due to Vehicle Pollution of the Atmosphere. Experience of Use of a Technique for Risk Assessment in Russia, Ed. by V.A. Petrukhin (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  10. V. M. Kopeikin, G. S. Golitsyn, Van, Genchen’, Van, Putsai, and T. Ya. Ponomareva, “Variations in soot concentrations in the megalopolises of Beijing and Moscow,” Atmos. Ocean. Opt. 32 (5), 540–544 (2019).

    Article  Google Scholar 

  11. E. G. Semutnikova, G. I. Gorchakov, S. A. Sitnov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, T. Ya. Ponomareva, A. A. Isakov, R. A. Gushchin, O. I. Datsenko, G. A. Kurbatov, and G. A. Kuznetsov, “Siberian smoke haze over European territory of Russia in July 2016: Atmospheric pollution and radiative effects,” Atmos. Ocean. Opt. 31 (2), 171–180 (2018).

    Article  Google Scholar 

  12. G. I. Gorchakov, V. M. Kopeikin, S. A. Sitnov, E. G. Semoutnikova, M. A. Sviridenkov, A. V. Karpov, E. A. Lezina, A. S. Emilenko, A. A. Isakov, G. A. Kuznetsov, and T. Ya. Ponomareva, “Moscow smoke haze in October 2014. Variations in the aerosol mass concentration,” Atmos. Oceanic Opt. 29 (1), 5–11 (2016).

    Article  Google Scholar 

  13. G. I. Gorchakov, E. G. Semutnikova, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, G. A. Kurbatov, E. A. Lezina, T. Ya. Ponomareva, and A. V. Sokolov, “Moscow smoky haze of 2010. Extreme aerosol and gaseous air pollution in Moscow region,” Opt. Atmos. Okeana 24 (6), 452–458 (2011).

    Article  Google Scholar 

  14. V. M. Kopeikin, A. S. Emilenko, A. A. Isakov, O. V. Loskutova, and T. Ya. Ponomareva, “Variability of soot and fine aerosol in the Moscow region in 2014–2016,” Atmos. Ocean. Opt. 31 (3), 243–249 (2018).

    Article  Google Scholar 

  15. V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of Black Carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires,” Atmos. Ocean. Opt. 19 (6), 434–440 (2006).

    Google Scholar 

  16. D. G. Chernov, V. S. Kozlov, M. V. Panchenko, and V. P. Shmargunov, “Annual variability of aerosol and black carbon concentration in clear air of Western Siberia in 2000–2016,” Proc. SPIE, 1 046 62I (2017).

  17. S. L. Belousov and T. S. Pagava, Calculation of air particle trajectories. Otraslevoi Fond Algoritmov i Programm “Gidrometsluzhba”. No. 257 244 8.00150-01 13 (1998).

  18. A. D. A. Hansen, H. Rosen, and T. Novakov, “The aethalometer—an instrument for real-time measurement of optical absorption by aerosol particles,” Sci. Total. Environ. 36 (1), 191–196 (1984).

    Article  ADS  Google Scholar 

  19. https://rp5.ru/Arkhiv_pogody_v_Moskve_(VDNKh). Cited December 19, 2019

Download references

Funding

This work was carried out under the financial support of the Ministry of Science and Higher Education of the Russian Federation (project no. 0129-2019-0002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Kopeikin or T. Ya. Ponomareva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopeikin, V.M., Ponomareva, T.Y. Dependence of Variations in Black Carbon Content in the Atmosphere of Moscow on Air Mass Transport Direction. Atmos Ocean Opt 34, 74–80 (2021). https://doi.org/10.1134/S1024856021010061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021010061

Keywords:

Navigation