Skip to main content
Log in

The First Complex Experiment on Determining Parameters of the Vertical Distribution of Methane in the Troposphere over Western Siberia from Solar Spectra Recorded with an IFS-125M FTIR Spectrometer and In Situ Aircraft Measurements

  • OPTICAL MODELS AND DATABASES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The results of a complex experiment on retrieving the methane distribution in the troposphere over Western Siberia from solar spectra recorded with an IFS-125M FTIR spectrometer, in situ aircraft measurements, and satellite observations are described, analyzed, and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. WMO Greenhouse Gas Bulletin No. 12 (WMO, 2016), p. 1–8.

  2. J. G. Canadell, D. E. Pataki, R. Gifford, R. A. Houghton, Y. Luo, M. R. Raupach, P. Smith, and W. Steffen, Saturation of the Terrestrial Carbon Sink, in Terrestrial Ecosystems in a Changing World, Ed. by J.G. Canadell, D.E. Pataki, and L.F. Pitelka (Springer, Berlin, 2007).

    Book  Google Scholar 

  3. www.esrl.noaa.gov/gmd/ccgg/trends/. Cited Match 13, 2020.

  4. R. J. W. Brienen, O. L. Phillips, T. R. Feldpausch et al., “Long-term decline of the Amazon carbon sink,” Nature 519 (7543), 344–348 (2015). https://doi.org/10.1038/nature14283

    Article  ADS  Google Scholar 

  5. D. J. Hayes, A. D. McGuire, D. W. Kicklighter, K. R. Gurney, T. J. Burnside, and J. M. Melillo, “Is the northern high-latitude land-based CO2 sink weakening?,” Global Biogeochem. Cycles 25 (GB3018), 1–14 (2011). https://doi.org/10.1029/2010GB003813

    Article  Google Scholar 

  6. S. Lind, R. B. Ingvaldsen, and T. Furevik, “Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import,” Nature Clim. Change 8 (7), 634–639 (2018).

    Article  ADS  Google Scholar 

  7. T. R. Christensen, V. K. Arora, M. Gauss, L. Hoglund-Isaksson, and F.-J. W. Parmentier, “Tracing the climate signal: Mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase,” Nature Sci. Rep. 9 (1146), 1–8 (2019).

    Google Scholar 

  8. A. Mascarelli, “A sleeping giant?,” Nature Clim. Change 1 (904), 46–49 (2009).

    Article  Google Scholar 

  9. A. Glikson, “The methane time bomb,” Energy Proc. 146, 23–29 (2018). https://doi.org/10.1016/j.egypro.2018.07.004

    Article  Google Scholar 

  10. M. Sasakawa, T. Machida, K. Ishijima, M. Arshinov, P. K. Patra, A. Ito, S. Aoki, and V. Petrov, “Temporal characteristics of CH4 vertical profiles observed in the West Siberian Lowland over Surgut from 1993 to 2015 and Novosibirsk from 1997 to 2015,” J. Geophys. Res.: Atmos. 122 (20), 11 261–11 273 (2017).

    Article  Google Scholar 

  11. E. J. Dlugokencky, S. Houweling, L. Bruhwiler, K. A. Masarie, P. M. Lang, J. B. Miller, and P. P. Tans, “Atmospheric methane levels off: Temporary pause or a new steady-state?,” Geophys. Rev. Lett. 30 (19), ASC5-1–ASC5-4 (2003). https://doi.org/10.1029/2003GL018126

  12. M. Rigby, R. G. Prinn, P. J. Fraser, P. G. Simmonds, R. L. Langenfelds, J. Huang, D. M. Cunnold, L. P. Steele, P. B. Krummel, R. F. Weiss, S. O’Doherty, P. K. Salameh, H. J. Wang, C. M. Harth, J. Muehle, and L. W. Porter, “Renewed growth of atmospheric methane,” Geophys. Rev. Lett. 35 (22) (2008). https://doi.org/10.1029/2008GL036037

  13. S. Kirschke, P. Bousquet, P. Ciais, M. Saunois, J. G. Canadell, E. J. Dlugokencky, P. Bergamaschi, D. Bergmann, D. R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E. L. Hodson, S. Houweling, B. Josse, P. J. Fraser, P. B. Krummel, J.-F. Lamarque, R. L. Langenfelds, C. Le Quere, V. Naik, S. O’Doherty, P. I. Palmer, I. Pison, D. Plummer, B. Poulter, R. G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D. T. Shindell, I. J. Simpson, R. Spahni, L. P. Steele, S. A. Strode, K. Sudo, S. Szopa, G. R. van der Werf, A. Voulgarakis, M. van Weele, R. F. Weiss, J. E. Williams, and G. Zeng, “Three decades of global methane sources and sinks,” Nat. Geosci. 6 (10), 813–823 (2013).

    Article  ADS  Google Scholar 

  14. P. K. Patra, T. Saeki, E. J. Dlugokencky, K. Ishijima, T. Umezawa, A. Ito, S. Aoki, S. Morimoto, E. A. Kort, and A. Crotwell, “Regional methane emission estimation based on observed atmospheric concentrations (2002–2012),” J. Meteor. Soc. Japan 94 (1), 31–113 (2016). https://doi.org/10.2151/jmsj.2016-006

    Article  Google Scholar 

  15. J. McNorton, M. P. Chipperfield, M. Gloor, C. Wilson, W. Feng, G. D. Hayman, M. Rigby, P. B. Krummel, S. O’Doherty, R. G. Prinn, R. F. Weiss, D. Young, E. Dlugokencky, and S. A. Montzka, “Role of OH variability in the stalling of the global atmospheric CH4 growth rate from 1999 to 2006,” Atmos. Chem. Phys. 16 (12), 7943–7956 (2016). https://doi.org/10.5194/acp-16-7943-2016

    Article  ADS  Google Scholar 

  16. J. McNorton, E. Gloor, C. Wilson, G. D. Hayman, N. Gedney, E. Comyn-Platt, T. Marthews, R. J. Parker, H. Boesch, and M. P. Chipperfield, “Role of regional wetland emissions in atmospheric methane variability,” Geophys. Rev. Lett. 43 (21), 1433–11444 (2016). https://doi.org/10.1002/2016GL070649

    Article  Google Scholar 

  17. M. Saunois, P. Bousquet, B. Poulter, A. Peregon, P. Ciais, J. G. Canadell, E. J. Dlugokencky, G. Etiope, D. Bastviken, S. Houweling, G. Janssens-Maenhout, F. N. Tubiello, S. Castaldi, R. B. Jackson, M. Alexe, V. K. Arora, D. J. Beerling, P. Bergamaschi, D. R. Blake, G. Brailsford, V. Brovkin, L. Bruhwiler, C. Crevoisier, P. Crill, K. Covey, C. Curry, C. Frankenberg, N. Gedney, L. Hoeglund-Isaksson, M. Ishizawa, A. Ito, F. Joos, H.-S. Kim, T. Kleinen, P. Krummel, J.-F. Lamarque, R. Langenfelds, R. Locatelli, T. Machida, S. Maksyutov, K. C. McDonald, J. Marshall, J. R. Melton, I. Morino, V. Naik, S. O’Doherty, F.‑J. W. Parmentier, P. K. Patra, C. Peng, S. Peng, G. P. Peters, I. Pison, C. Prigent, R. Prinn, M. Ramonet, W. J. Riley, M. Saito, M. Santini, R. Schroeder, I. J. Simpson, R. Spahni, P. Steele, A. Takizawa, B. F. Thornton, H. Tian, Y. Tohjima, N. Viovy, A. Voulgarakis, M. van Weele, G. R. van der Werf, R. Weiss, C. Wiedinmyer, D. J. Wilton, A. Wiltshire, D. Worthy, D. Wunch, X. Xu, Y. Yoshida, B. Zhang, Z. Zhang, and Q. Zhu, “The global methane budget 2000–2012,” Earth Syst. Sci. Data 8 (2), 697–751 (2016). https://doi.org/10.5194/essd-8-697-2016

    Article  ADS  Google Scholar 

  18. P. K. Patra, S. Houweling, M. Krol, P. Bousquet, D. Belikov, D. Bergmann, H. Bian, P. Cameron-Smith, M. P. Chipperfield, K. Corbin, A. Fortems-Cheiney, A. Fraser, E. Gloor, P. Hess, A. Ito, S. R. Kawa, R. M. Law, Z. Loh, S. Maksyutov, L. Meng, P. I. Palmer, R. G. Prinn, M. Rigby, R. Saito, and C. Wilson, “TransCom model simulations of CH4 and related species: Linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere,” Atmos. Chem. Phys. 11 (24), 12813–12837 (2011). https://doi.org/10.5194/acp-11-12813-2011

    Article  ADS  Google Scholar 

  19. V. Naik, A. Voulgarakis, A. M. Fiore, L. W. Horowitz, J. -F. Lamarque, M. Lin, M. J. Prather, P. J. Young, D. Bergmann, P. J. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsoren, R. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, T. P. C. Van Noije, D. A. Plummer, M. Righi, S. T. Rumbold, R. Skeie, D. T. Shindell, D. S. Stevenson, S. Strode, K. Sudo, S. Szopa, and G. Zeng, “Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP),” Atmos. Chem. Phys. 13 (10), 5277–5298 (2013). https://doi.org/10.5194/acp-13-5277-2013

    Article  ADS  Google Scholar 

  20. P. Hamill, L. T. Iraci, E. L. Yates, W. Gore, T. P. Bui, T. Tanaka, and M. Loewenstein, “A new instrumented airborne platform for atmospheric research,” Bull. Am. Meteor. Soc. 97 (3), 397–404.

  21. NOAA's Comprehensive Large Array-data Stewardship System. www.bou.class.noaa.gov/saa/products. Cited March 13, 2020.

  22. T. August, D. Klaes, P. Schlussel, T. Hultberg, M. Crapeau, A. Arriaga, A. O’Carroll, D. Coppens, R. Munro, and X. Calbet, “IASI on Metop-A: Operational Level 2 retrievals after five years in orbit,” J. Quant. Spectrosc. Radiat. Transfer 113 (11), 1340–1371 (2012).

    Article  ADS  Google Scholar 

  23. S. S. Vasil’chenko, V. I. Serdukov, and L. N. Sinitsa, “Spectral system for measuring gaseous atmospheric components with a fiber-optic tracking system, and certain analysis results of atmospheric spectra,” Atmos. Ocean. Opt. 26 (3), 227–232 (2013).

    Article  Google Scholar 

  24. R. Sussmann, F. Forster, M. Rettinger, and N. Jones, “Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network,” Atmos. Meas. Tech. 4 (9), 1943–1964 (2011). https://doi.org/10.5194/amt-4-1943-2011

    Article  Google Scholar 

  25. Archived Meteorology. URL: https://ready.arl. noaa.gov/READYamet.php. Cited March 13, 2020.

  26. G. G. Matvienko, B. D. Belan, M. V. Panchenko, S. M. Sakerin, D. M. Kabanov, S. A. Turchinovich, Yu. S. Turchinovich, T. A. Eremina, V. S. Kozlov, S. A. Terpugova, V. V. Pol’kin, E. P. Yausheva, D. G. Chernov, S. L. Odintsov, V. D. Burlakov, M. Yu. Arshinov, G. A. Ivlev, D. E. Savkin, A. V. Fofonov, V. A. Gladkikh, A. P. Kamardin, D. B. Belan, M. V. Grishaev, V. V. Belov, S. V. Afonin, Yu. S. Balin, G. P. Kokhanenko, I. E. Penner, S. V. Samoilova, P. N. Antokhin, V. G. Arshinova, D. K. Davydov, A. V. Kozlov, D. A. Pestunov, T. M. Rasskazchikova, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, S. B. Belan, V. P. Shmargunov, B. A. Voronin, V. I. Serdyukov, E. R. Polovtseva, S. S. Vasil’chenko, O. V. Tikhomirova, Yu. N. Ponomarev, O. A. Romanovskii, L. N. Sinitsa, V. N. Marichev, M. V. Makarova, A. S. Safatov, A. S. Kozlov, S. B. Malyshkin, and T. A. Maksimova, “Instrumentation complex for comprehensive study of atmospheric parameters,” Int. J. Remote Sens. 35 (15), 5651–5676 (2014).

    Google Scholar 

  27. P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, L. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. LeRoy, G. Li, D. Longo, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, Auwera J. Vander, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer. 130 (November), 4–50 (2013).

    Article  ADS  Google Scholar 

  28. N. Jacquinet-Husson, R. Armante, N. A. Scott, A. Chedin, L. Crepeau, C. Boutammine, A. Bouhdaoui, C. Crevoisier, V. Capelle, C. Boonne, N. Poulet-Crovisier, A. Barbe, BennerD. Chris, V. Boudon, L. R. Brown, J. Buldyreva, A. Campargue, L. H. Coudert, V. M. Devi, M. J. Down, B. J. Drouin, A. Fayt, C. Fittschen, J.-M. Flaud, R. R. Gamache, J. J. Harrison, C. Hill, O. Hodnebrog, S.-M. Hu, D. Jacquemart, A. Jolly, E. Jimenez, N. N. Lavrentieva, A.-W. Liu, L. Lodi, O. M. Lyulin, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. Nikitin, C. J. Nielsen, J. Orphal, V. I. Perevalov, A. Perrin, E. Polovtseva, A. Predoi-Cross, M. Rotger, A. A. Ruth, S. S. Yu, K. Sung, S. A. Tashkun, J. Tennyson, Vl. G. Tyuterev, Auwera J. Vander, B. A. Voronin, and A. Makie, “2015 edition of the GEISA spectroscopic database,” J. Mol. Spectrosc. 327, 31–7287 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to prof. L.N. Sinitsa and V.V. Belov, as well as engineer Yu.A. Matul’yan for their help in the work.

Funding

This work was carried out within State Assignment for IAO SB RAS no. AAAA-A17-117021310150-0, under a partial support of the Russian Foundation for Basic Research (grant no. 19-03-00389). The processing of Fourier spectrometer measurements and the comparison with independent measurements at St. Petersburg State University were supported by the Russian Foundation for Basic Research (grant no. 18-05-00011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Makarova or B. A. Voronin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarova, M.V., Serdyukov, V.I., Arshinov, M.Y. et al. The First Complex Experiment on Determining Parameters of the Vertical Distribution of Methane in the Troposphere over Western Siberia from Solar Spectra Recorded with an IFS-125M FTIR Spectrometer and In Situ Aircraft Measurements. Atmos Ocean Opt 34, 61–67 (2021). https://doi.org/10.1134/S1024856021010073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021010073

Keywords:

Navigation