Skip to main content
Log in

Viscosities of the Nd and Fe–30% Nd–1% B–1% Co–1% Dy Melts

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Neodymium is one the most widely used rare-earth metals, the main quantity of which is used in manufacturing permanent magnets. Experimental data on the physicochemical properties of neodymium and the Fe–30% Nd–1% B–1% Co–1% Dy alloy in the liquid state are reported. Initially, in manufacturing NdFeB magnets, an Fe–30% Nd–1% B–1% Co–1% Dy ingot is prepared. The kinematic viscosity and electrical resistivity of liquid Nd (99.85% purity) and the kinematic viscosity of the Fe–30% Nd–1% B–1% Co–1% Dy alloy are measured. The temperature dependence of the kinematic viscosity of the neodymium melt is described by the Arrhenius–Frenkel–Eyring equation and agrees with the results of theoretical calculation. The temperature of the kinematic viscosity of the Fe–30% Nd–1% B–1% Co–1% Dy melt exhibits anomalous behavior in a temperature range of 1320–1550°C: the viscosity increases with the temperature. The increase in the viscosity with the temperature, i.e., so-called “quasi-gas” behavior of the melt is described in terms of physical chemistry concepts using the molar viscosity concept. The temperature dependence of the electrical resistivity of liquid neodymium is described by a linear function. The measured values of the electrical resistivity of the neodymium melt are 30% higher than the experimental values obtained by other investigators. The measured results are recommended to optimize the metallurgical production conditions of the sintered permanent NdFeB magnets in Ural Strip Casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. M. E. Drits, Properties of Elements: Handbook (ID Ruda Metally, Moscow, 2003).

    Google Scholar 

  2. E. M. Savitskii, V. F. Terekhova, and O. P. Naumkin, “Physicochemical properties of rare-earth metals, scandium, and yttrium,” Usp. Fiz. Nauk LXXIX (2), 263–293 (1963).

    Article  Google Scholar 

  3. A. I. Kiselev and V. I. Kononenko, Thermophysical Properties of Rare-Earth Metals Melts: Numerical Estimates (UrO RAN, Ekaterinburg, 2003).

    Google Scholar 

  4. V. I. Kononenko, A. L. Sukhman, S. L. Gruverman, and V. V. Torokin, “Density and surface tension of liquid rare earth metals, scandium and yttrium,” Phys. Stat. Sol. (a). 84, 423–432 (1984).

    Article  CAS  Google Scholar 

  5. S. I. Popel’, Surface Phenomena in Melts (Metallurgiya, Moscow, 1994).

    Google Scholar 

  6. R. A. Khairulin and S. V. Stankus, “Change in the praseodymium and neodymium density at crystallization from liquid state,” in Thermal Physics of Crystallization of Substances and Materials (Inst. Teor. Fiz., Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1987), pp. 143–154.

    Google Scholar 

  7. W. G. Rohr, “The liquid densities of cerium and neodymium metals,” J. Less-Comm. Met. 10 (6), 389–391 (1966).

    CAS  Google Scholar 

  8. L. L. Bezukladnikova and V. N. Kononenko, “Surface and volume properties of lanthanides,” Metally, No. 5, 117–120 (1994).

    Google Scholar 

  9. V. E. Zinov’ev, Thermal Properties of Metals at High Temperatures. Handbook (Metallurgiya, Moscow, 1989).

    Google Scholar 

  10. V. I. Kononenko, A. I. Kiselev, and I. N. Latosh, “Calculation of kinetic characteristics of liquid rare-earth metals,” Metallofiz. 8 (2), 2–23 (1986).

    Google Scholar 

  11. V. G. Postovalov, E. P. Romanov, V. P. Kondrat’ev, and V. I. Kononenko, “Theory of transport in liquid metals: Calculation of dynamic viscosity,” High Temp. 41 (6), 762–770 (2003).

    Article  CAS  Google Scholar 

  12. V. P. Kondrat’ev, E. P. Romanov, and V. G. Postovalov, “Kinetic properties of light lanthanide melts,” J. Phys.: Conference Series 98, art. 062020 (2008).

    Google Scholar 

  13. S. N. Banchilla and L. N. Filippov, “Study of electrical conductivity of liquid metals,” Teplofiz. Vys. Temp. 11 (6), 1301–1305 (1973).

    Google Scholar 

  14. V. G. Postovalov, E. P. Romanov, and V. P. Kondrat’ev, “Structural characteristics and the temperature derivative of the electrical resistivity of liquid lanthanides,” Phys. Met. Metallogr. 103 (3), 234–245 (2007).

    Article  Google Scholar 

  15. C. Hiemstra, P. Keegstra, W. I. Masselink, and J. B. Van Zytveld, “Electrical resistivity of solid and liquid Pr, Nd and Sm,” J. Phys. F: Met. Phys. 14 (8), 1867–1875 (1984).

    Article  CAS  Google Scholar 

  16. H. I. Güntherodt, E. Hauser, and H. U. Künzi, “Electrical resistivity of liquid rare-earth metals and their alloys,” in Proceedings of Third International Conference on Liquid Metals (Bristol, 1976), pp. 324–336.

  17. S. Ozawa, T. Saito, J. Yu, et al. “Solidification behavior in undercooled Nd–Fe–B alloys,” J. Alloys Compd., 322 (1–2), 276–280 (2001).

  18. M. J. Kramer, L. H. Lewis, L. M. Fabietti, Y. Tang, W. Miller, K. W. Dennis, and R. W. Mc Callum, “Solidification, microstructural refinement and magnetism in Nd2Fe14B,” J. Magn. Magn. Mater. 241 (1), 144–155 (2002).

    Article  CAS  Google Scholar 

  19. T. Hattori, N. Fukamachi, R. Goto, N. Tezuka, and S. Sugimoto, “Microstructural evaluation of Nd–Fe–B strip cast alloys,” Mater. Trans. 50 (3), 479–482 (2009).

    Article  CAS  Google Scholar 

  20. D. Yu. Vasilenko, A. V. Shitov, A. V. Vlasyuga, A. G. Popov, N. V. Kudrevatykh, and N. V. Pechishcheva, “Microstructure and properties of Nd–Fe–B alloys produced by strip casting and of permanent magnets fabricated from them,” Met. Sci. Heat Treat. 56 (11–12), 585–590 (2015).

  21. O. A. Esin, B. R. Gel’chinskii, N. A. Vatolin, et al., “On the correlation between the viscosity and surface tension in simple liquids,” Zh. Fiz. Khim. 49 (11), 2955–2957 (1975).

    CAS  Google Scholar 

  22. G. V. Tyagunov, V. S. Tsepelev, M. N. Kushnir, and G. N. Yakovlev, “Installation for measuring the kinematic viscosity of metallic melts,” Zavodsk. Labor., No. 10, 919–920 (1980).

  23. A. V. Ryabina, V. I. Kononenko, and A. A. Razhabov, “Electrode-less method for measuring electrical resistivity of solid and liquid metals and installation for realization of the method,” Rasplavy, No. 1, 34–42 (2009).

    Google Scholar 

  24. G. V. Tuagunov, B. A. Baum, V. S. Tsepelev, A. G. Tyagunov, and A. N. Vlokh, “Measuring the electrical resistivity by rotating magnetic field method,” Zavodsk. Labor. 69 (2), 36–38 (2003).

  25. O. I. Ostrovskii, V. A. Grigoryan, and A. F. Vishkarev, Properties of Metallic Melts (Metallurgiya, Moscow, 1988).

    Google Scholar 

  26. E. R. Andrievskaya, “Phase equilibria in the refractory oxide of zirconia, hafnia and yttria with rare-earth oxides,” J. Europ. Ceram. Soc. 28, 2363–2388 (2008).

    Article  CAS  Google Scholar 

  27. A. Rouanet, Rev. Int. Hautes Temp. Refract. 8, 161 (1971).

    CAS  Google Scholar 

  28. M. P. Van Dijk, K. J. de Vries, and A. J. Burgraaf, “Oxygen ion and mixed conductivity in compounds with the fluorite and pyrochlore structure,” Solid State Ionics 910, 913–920 (1983).

  29. Y. Matsuura, “Phase diagram of the Nd–Fe–B ternary system,” Jpn. J. Appl. Phys. 24 (8), 635–637 (1985).

    Article  CAS  Google Scholar 

  30. E. Yu. Tyunina, “Molar viscosity of liquid metals in a range of 300–4000 K,” Zh. Fiz. Khim. 88 (4), 557–563 (2014).

    Google Scholar 

  31. S. R. Nagel and J. Tauc, “Nearly-free-electron approach to the theory of metallic glass alloys,” Phys. Rev. Lett. 35 (6), 380–383 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Chikova.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slinkin, I.V., Chikova, O.A. & V’yukhin, V.V. Viscosities of the Nd and Fe–30% Nd–1% B–1% Co–1% Dy Melts. Russ. Metall. 2021, 109–113 (2021). https://doi.org/10.1134/S0036029521020257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521020257

Keywords:

Navigation