Skip to main content
Log in

Computation of Composite Mg II Core-to-Wing Ratio for Solar Cycle 22 and 23

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The Mg II core-to-wing ratio (c/w ratio) data is used to derive the solar extreme UV emission which brings a vital role in the creation of the Earth’s ionosphere region. A continuous Mg II c/w ratio data has scientific importance towards the analysis of the earth’s climate as well as for the solar chromosphere region. Various instruments of ESA and NASA satellites such as SUSIM, SOLSTICE, GOME, NOAA9, NOAA11 etc. measure Mg II c/w ratio data at different time scales but still some missing measurements are being reported. To fill those missing gaps, the current investigation has used the correlation analysis technique between Mg II and other solar indices separately. Our result establishes a highest correlation with 10.7 cm (2800 MHz) radio flux (F10.7) data in comparison to other solar indices during solar cycle 22 and 23. But for phase-wise correlation analysis, the correlation coefficient shows varying behavior during declining and rising phase of each solar cycle due to hysteresis of magnetic field inside the Sun. Also, the correlation coefficient of the linear regression model for Coronal Index vs. Mg II has a higher value than 10.7 cm radio flux vs. Mg II during maximum phase of each solar cycle. In the present investigation, the composite Mg II c/w ratio data is computed using a linear regression model with strongly correlated solar index data depending on time frame analysis of each solar cycle to achieve better correlation. Finally, a correlation analysis is also being performed between the computed composite Mg II c/w ratio and Bremen composite data and a fair correlation around 0.98 has been found. The computed series is also validated with other long-range solar indices data to verify different long-range trends that can reflect the actual nature of the Sun’s chromosphere region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Basu, S., The peculiar solar cycle 24—where do we stand?, J. Phys.: Conf. Ser., 2013, vol. 440, id 012001. https://doi.org/10.1088/1742-6596/440/1/012001

  2. Bolduc, C., Charbonneau, P., Dumoulin, V., Bourqui, M.S., and Crouch, A.D., A fast model for the reconstruction of spectral solar irradiance in the near- and mid-ultraviolet, Sol. Phys., 2012, vol. 383. https://doi.org/10.1007/s11207-012-0019-4

  3. Bruevich, E., Bruevich, V., and Yakunina, G., Changed relation between solar 10.7-cm radio flux and some activity indices which describe the radiation at different altitudes of atmosphere during cycles 21–23, J. Astrophys. Astron., 2014, vol. 35, no. 1. https://doi.org/10.1007/s12036-014-9258-0

  4. Bruevich, E.A., Kazachevskaya, T.V., Katyushina, V.V., Nusinov, A.A., and Yakunina, G.V., Hysteresis of indices of solar and ionospheric activity during 11-year cycles, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 8, pp. 1075–1081. https://doi.org/10.1134/S001679321608003X

  5. Christensen-Dalsgaard, J., Helioseismology, Rev. Mod. Phys., 2001, vol. 74, no. 4, pp. 1073–1130. https://doi.org/10.1103/RevModPhys.74.1073

    Article  Google Scholar 

  6. Coddington, O., Lean, J.L., Pilewskie, P., Snow, M., and Lindholm, D., A solar irradiance climate data record, Bull. Am. Meteorol. Soc., 2016, vol. 97, no. 7, pp. 1265–1282. https://doi.org/10.1175/BAMS-D-14-00265.1

    Article  Google Scholar 

  7. DeLand, M.T. and Cebula, R.P., Composite Mg II solar activity index for solar cycles 21 and 22, J. Geophys. Res.: Atmos., 1993, vol. 98, pp. 12809–12823. https://doi.org/10.1029/93JD00421

    Article  Google Scholar 

  8. DeLand, M.T. and Cebula, R.P., Solar UV variations during the decline of cycle 23, J. Atmos. Sol.-Terr. Phys., 2012, vol. 77, pp. 225–234. https://doi.org/10.1016/j.jastp.2012.01.007

    Article  Google Scholar 

  9. Donnelly, R.E., White, O.R., and Livingston, W.C., The solar Ca II K index and the Mg II core-to-wing ratio, Sol. Phys., 1994, vol. 152, pp. 69–76. https://doi.org/10.1007/BF01473185

    Article  Google Scholar 

  10. Dudok de Wit, T., Kretzschmar, M., Lilensten, J., and Woods, T., Finding the best proxies for the solar UV irradiance, Geophys. Res. Lett., 2009, vol. 36, L10107. https://doi.org/10.1029/2009GL037825

    Article  Google Scholar 

  11. Ermolli, I., Criscuoli, S., and Giorgi, F., Recent results from optical synoptic observations of the solar atmosphere with ground-based instruments, Contrib. Astron. Obs. Skalnaté Pleso, 2011, vol. 41, no. 2, pp. 73–84.

    Google Scholar 

  12. Ermolli, I., Matthes, K., Dudok de Wit, T., et al., Recent variability of the solar spectral irradiance and its impact on climate modelling, Atmos. Chem. Phys., 2013, vol. 13, pp. 3945–3977. https://doi.org/10.5194/acp-13-3945-2013

    Article  Google Scholar 

  13. Fontenla, J.M., Harder, J., Livingston, W., Snow, M., and Woods, T., High-resolution solar spectral irradiance from extreme ultraviolet to far infrared, J. Geophys. Res.: Atmos., 2011, vol. 116, D20108. https://doi.org/10.1029/2011JD016032

    Article  Google Scholar 

  14. Haigh, J.D., The role of stratospheric ozone in modulating the solar radiative forcing of climate, Nature, 1994, vol. 370, pp. 544–546. https://doi.org/10.1038/370544a0

    Article  Google Scholar 

  15. Hinteregger, H.E., EUV Fluxes in the solar spectrum below 2000 Å, J. Atmos. Terr. Phys., 1976, vol. 38, no. 8, pp. 791–806. https://doi.org/10.1016/0021-9169(76)90020-9

    Article  Google Scholar 

  16. Hinteregger, H.E., Fukui, K., and Gilson, G.G., Observational, reference and model data on solar EUV, from measurements on AE-E, Geophys. Res. Lett., 1981, vol. 8, no. 11, pp. 1147–1150. https://doi.org/10.1029/GL008i011p01147

    Article  Google Scholar 

  17. Janardhan, P., Susanta, K.B., and Gosain, S., Solar polar fields during cycles 21–23: Correlation with meridional flows, Sol. Phys., 2010, vol. 267, pp. 267–277. https://doi.org/10.1007/s11207-010-9653-x

    Article  Google Scholar 

  18. Karak, B.B., Mandal, S., and Banerjee, D., Double-peaks of the solar cycle: An explanation from a dynamo model, Astrophys. J., 2018, vol. 866, no. 1, id 17. https://doi.org/10.3847/1538-4357/aada0d

  19. Laštovička, J., Is the relation between ionospheric parameters and solar proxies stable?, Geophys. Res. Lett., 2019, vol. 46, no. 24, pp. 14208–14213. https://doi.org/10.1029/2019GL085033

    Article  Google Scholar 

  20. Lean, J.L., White, O.R., Livingston, W.C., and Picone, J.M., Variability of a composite chromospheric irradiance index during the 11-year activity cycle and over longer time periods, J. Geophys. Res.: Sol. Phys., 2001, vol. 106, no. A6, pp. 10645–10658. https://doi.org/10.1029/2000JA000340

    Article  Google Scholar 

  21. Lemaire, P. and Gouttebroze, P., Magnesium II line formation: The contribution of high atomic levels to the resonance lines, Astron. Astrophys., 1983, vol. 125, no. 2, pp. 241–245.

    Google Scholar 

  22. Levens, P.J. and Labrosse, N., Modelling of Mg II lines in solar prominences, Astron. Astrophys., 2019, vol. 625, id A30. https://doi.org/10.1051/0004-6361/201833132

  23. Nagovitsyn, Y.A., Pevtsov, A.A., and Livingston, W.C., On a possible explanation of the long-term decrease in sunspot field strength, Astrophys. J. Lett., 2012, vol. 758, no. 1, id L20. https://doi.org/10.1088/2041-8205/758/1/L20

  24. Nusinov, A.A., Hysteresis of a solar EUV flux and the relation of its characteristics to the solar cycle amplitude, Radiophys. Quantum Electron., 1996, vol. 39, pp. 830–832. https://doi.org/10.1007/BF02120967

    Article  Google Scholar 

  25. Penn, M.J. and Livingston, W.C., Temporal changes in sunspot umbral magnetic fields and temperatures, Astrophys. J. Lett., 2006, vol. 649, no. 1, id L45. https://doi.org/10.1086/508345

  26. Penza, V., Pietropaolo, E., and Livingston, W., Modeling the cyclic modulation of photospheric lines, Astron. Astrophys., 2006, vol. 454, no. 1, pp. 349–358. https://doi.org/10.1051/0004-6361:20053405

    Article  Google Scholar 

  27. Richards, P.G., Fennelly, J.A., and Torr, D.G., EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res.: Space Phys., 1994, vol. 99, pp. 8981–8992. https://doi.org/10.1029/94JA00518

    Article  Google Scholar 

  28. Snow, M., Weber, M., Machol, J., Viereck, R., and Richard, E., Comparison of Magnesium II core-to-wing ratio observations during solar minimum 23/24, J. Space Weather Space Clim., 2014, vol. 4, id A04. https://doi.org/10.1051/swsc/2014001

  29. Svalgaard, L., Lockwood, M., and Beer, J., Long-term reconstruction of solar and solar wind parameters, ISSI team 233, 2011. http://www.leif.org/research/Svalgaard_ ISSI_Proposal_Base.pdf.

  30. Thuillier, G. and Bruinsma, S., The Mg II index for upper atmosphere modelling, Ann. Geophys., 2001, vol. 19, pp. 219–228. https://doi.org/10.5194/angeo-19-219-2001

    Article  Google Scholar 

  31. Thuillier, G., DeLand, M., Shapiro, A., Schmutz, W., Bolsée, D., and Melo, S.M.L., The solar spectral irradiance as a function of the Mg II index for atmosphere and climate modelling, Sol. Phys., 2012, vol. 277, pp. 245–266. https://doi.org/10.1007/s11207-011-9912-5

    Article  Google Scholar 

  32. Tobiska, W.K., Revised solar extreme ultraviolet flux model, J. Atmos. Terr. Phys., 1991, vol. 53, pp. 1005–1018. https://doi.org/10.1016/0021-9169(91)90046-A

    Article  Google Scholar 

  33. Viereck, R., Puga, L., McMullin, D., Judge, D., Weber, M., and Tobiska, W.K., The Mg II index: A proxy for solar EUV, Geophys. Res. Lett., 2001, vol. 28, no. 7, pp. 1343–1346. https://doi.org/10.1029/2000GL012551

    Article  Google Scholar 

  34. Viereck, R.A., Floyd, L.E., Crane, P.C., et al., A composite Mg II index spanning from 1978 to 2003, Space Weather, 2004, vol. 2, no. 10, S10005. https://doi.org/10.1029/2004SW000084

    Article  Google Scholar 

  35. Warren, H.P., Mariska, J.T., and Lean, J.A., A new reference spectrum for the EUV irradiance of the quiet Sun, J. Geophys. Res.: Space Phys., 1998, vol. 103, pp. 12077–12089. https://doi.org/10.1029/98JA00810

    Article  Google Scholar 

  36. Yeo, K.L., Krivova, N.A., and Solanki, S.K., Solar cycle variation in solar irradiance, Space Sci. Rev., 2014, vol. 186, pp. 137–167. https://doi.org/10.1007/s11214-014-0061-7

    Article  Google Scholar 

Download references

8. ACKNOWLEDGMENTS

We are thankful to the National Geophysical Data Center (NGDC) and its sister data centers merged into the National Centers for Environmental Information (NCEI), NOAA. Data used in this study were provided by National Centers for Environmental Information for Solar-Terrestrial Physics, NOAA, Broadway, Colorado, USA, Sunspot Index Data Center, Domimion Radio Astrophysical Observatory in Penticton, British Columbia, Slovak Academy of Sciences, SK-059 60 Tatranska Lomnica Slovak Republic and Kandilli Observatory.

Funding

We sincerely acknowledge the support extended by Jadavpur University, West Bengal India. This work is a part of RUSA 2.0 faculty major research project under Jadavpur University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soumya Roy, Prasad, A., Ghosh, K. et al. Computation of Composite Mg II Core-to-Wing Ratio for Solar Cycle 22 and 23. Geomagn. Aeron. 61, 128–137 (2021). https://doi.org/10.1134/S0016793221010138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221010138

Navigation