Skip to main content
Log in

Peaks of Hydrogen Thermal Desorption: Simulation and Interpretation

  • THEORETICAL AND MATHEMATICAL PHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Different models of hydrogen thermal desorption peaks have been analyzed. The model of volume-averaged concentration dynamics with a continuum parameter makes it possible to integrally take into consideration the dominance of limiting factors: diffusion and recombination of atoms into desorbing molecules. An analytical symmetry criterion for peaks versus the method of expanding a composed spectrum into a series of Gaussian curves is suggested. Modifications of (i) the Kissinger method to estimate the activation energy of desorption in experiments with several material heating rates and (ii) a procedure for solving the inverse problem of unimodal peak parametrical identification from one heat rate are presented. Comparison with the diffusion model with dynamic boundary conditions has been carried out. It has been shown that local peaks may arise not only because of release of hydrogen atoms with different binding energies captured by volume traps, but also because of interaction between volume and surface processes and heat-induced surface structure modifications. The parameters of deuterium thermal desorption from ISO-880U graphite have been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Interactions of Hydrogen with Metals, Ed. by A. P. Zakharov (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  2. Yu. S. Nechaev, Phys.-Usp. 49 (6), 563 (2006). https://doi.org/10.1070/PU2006v049n06ABEH002424

    Article  Google Scholar 

  3. A. A. Pisarev, I. V. Tsvetkov, E. D. Marenkov, and S. S. Yarko, Hydrogen Pearmeability through Metals (MEPhI, Moscow, 2008) [in Russian].

  4. Hydrogen Isotopes. Fundamental and Applied Studies, Ed. by A. A. Yukhimchuk (Russ. Fed. Nucl. Center, Sarov, 2009) [in Russian].

    Google Scholar 

  5. Fundamentals of Hydrogen Power Engineering, Ed. by V. A. Moshnikov and E. I. Terukov (St. Petersburg Gos. Electrotekh. Univ. “LETI,” St. Petersburg, 2011) [in Russian].

  6. S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, Thermochim. Acta 520 (1–2), 1 (2011). https://doi.org/10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  7. S. Vyazovkin, K. Chrissafis, M. L. Di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, and J. J. Sunol, Thermochim. Acta 590, 1 (2014). https://doi.org/10.1016/j.tca.2014.05.036

    Article  Google Scholar 

  8. M. V. Lototskyy, R. Denys, S. N. Nyamsi, I. Bessa-rabskaia, and V. Yartys, Mater. Today: Proc. 5 (4), 10440 (2018). https://doi.org/10.1016/j.matpr.2017.12.375

    Article  Google Scholar 

  9. F. G. Wei, M. Enomoto, and K. Tsuzaki, Comput. Mater. Sci. 51, 322 (2012). https://doi.org/10.1016/j.commatsci.2011.07.009

    Article  Google Scholar 

  10. R. Silverstein, D. Eliezer, and E. Tal-Gutelmacher, J. Alloys Compd. 747, 511 (2018). https://doi.org/10.1016/j.jallcom.2018.03.066

    Article  Google Scholar 

  11. E. A. Denisov, T. N. Kompaniets, A. A. Yukhimchuk, I. E. Boitsov, and I. L. Malkov, Tech. Phys. 58 (6), 779 (2013). https://doi.org/10.1134/S1063784213060091

    Article  Google Scholar 

  12. E. A. Hodille, L. B. Begrambekov, J. Y. Pascal, O. Saidi, J. M. Layet, B. Pégourié, and C. Grisolia, Int. J. Hydrogen Energy 39 (35), 20054 (2014). https://doi.org/10.1016/j.ijhydene.2014.09.027

    Article  Google Scholar 

  13. L. B. Begrambekov, A. E. Evsin, A. V. Grunin, A. I. Gumarov, A. S. Kaplevsky, N. F. Kashapov, A. G. Luchkin, I. R. Vakhitov, I. V. Yanilkin, and L. R. Tagirov, Int. J. Hydrogen Energy 44 (31), 17154 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.198

    Article  Google Scholar 

  14. F. J. Castro and G. Meyer, J. Alloys Compd. 330332, 59 (2002). https://doi.org/10.1016/S0925-8388(01)01625-5

  15. E. A. Evard, I. E. Gabis, and V. A. Yartys, Int. J. Hydrogen Energy 35 (17), 9060 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.092

    Article  Google Scholar 

  16. A. Rokhmanenkov and A. Yanilkin, Int. J. Hydrogen Energy 44 (55), 29132 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.237

    Article  Google Scholar 

  17. T. L. Murashkina, M. S. Syrtanov, R. S. Laptev, and A. M. Lider, Int. J. Hydrogen Energy 44 (13), 6709 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.150

    Article  Google Scholar 

  18. N. I. Rodchenkova and Yu. V. Zaika, Int. J. Hydrogen Energy 36 (1), 1239 (2011). https://doi.org/10.1016/j.ijhydene.2010.06.121

    Article  Google Scholar 

  19. Yu. V. Zaika and E. K. Kostikova, Adv. Mater. Sci. Appl. 3 (3), 120 (2014). https://doi.org/10.5963/AMSA0303003

    Article  Google Scholar 

  20. Yu. V. Zaika and E. K. Kostikova, Int. J. Hydrogen Energy 42 (1), 4005 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.104

    Article  Google Scholar 

  21. E. Legrand, A. Oudriss, C. Savall, J. Bouhattate, and X. Feaugas, Int. J. Hydrogen Energy 40 (6), 2871 (2015). https://doi.org/10.1016/j.ijhydene.2014.12.069

    Article  Google Scholar 

  22. Yu. S. Nechaev, N. M. Alexandrova, N. A. Shurygina, A. O. Cheretaeva, E. K. Kostikova, and A. Öchsner, J. Nucl. Mater. 535, 152162 (2020). https://doi.org/10.1016/j.jnucmat.2020.152162

    Article  Google Scholar 

  23. Yu. S. Nechaev, N. M. Alexandrova, O. S. Cheretaeva, V. L. Kuznetsov, A. Öchner, E. K. Kostikova, and Yu. V. Zaika, Int. J. Hydrogen Energy 45 (46), 25030 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.242

    Article  Google Scholar 

  24. P. G. Shewmon, Diffusion in Solids (McGraw-Hill, New York, 1963).

    Google Scholar 

  25. H. Atsumi and Y. Kondo, Fusion Eng. Des. 131, 49 (2018). https://doi.org/10.1016/j.fusengdes.2018.04

    Article  Google Scholar 

  26. H. Atsumi, Y. Takemura, T. Miyabe, T. Konishi, T. Tanabe, and T. Shikama, J. Nucl. Mater. 442, S746 (2013). https://doi.org/10.1016/j.jnucmat.2013.03.041

    Article  ADS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research, grant no. 18-29-19149 mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Zaika.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaika, Y.V., Kostikova, E.K. & Nechaev, Y.S. Peaks of Hydrogen Thermal Desorption: Simulation and Interpretation. Tech. Phys. 66, 210–220 (2021). https://doi.org/10.1134/S1063784221020250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221020250

Navigation