Skip to main content
Log in

Advanced Technologies for Applied Particle Accelerators and Examples of Their Use (Review)

  • REVIEWS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

This review presents the author’s view on modern trends in the development of charged particle accelerators for various applications, which is based on his own experience in this research field. The most promising, in the author’s opinion, areas of application of resonance accelerators are shown, in which substantial progress has been made by using new technologies. The use of high-gradient structures, novel materials, new manufacturing technologies, cooling systems, and new principles of acceleration made it possible to achieve miniaturization, to increase cost efficiency, and to succeed in adjusting accelerator parameters (to achieve variability) for industrial, medical, and research purposes, as well as for applications in security systems and quantum computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. R. W. Garnett, Phys. Procedia 66, 196 (2015). https://doi.org/10.1016/j.phpro.2015.05.026

    Article  ADS  Google Scholar 

  2. V. N. Starovoitova, L. Tchelidze, and D. P. Wells, Appl. Radiat. Isot. 85, 39 (2014). https://doi.org/10.1016/j.apradiso.2013.11.122

    Article  Google Scholar 

  3. W. P. Levin, H. Kooy, J. S. Loeffler, and T. F. DeLaney, Br. J. Cancer 93 (8), 849 (2005). https://doi.org/10.1038/sj.bjc.6602754

    Article  Google Scholar 

  4. T. D. Malouff, A. Mahajan, S. Krishnan, C. Beltran, D. S. Seneviratne, and D. M. Trifiletti, Front. Oncol. 10, 82 (2020). https://doi.org/10.3389/fonc.2020.00082

    Article  Google Scholar 

  5. J. F. Diehl, Radiat. Phys. Chem. 62 (3–6), 211 (2002). https://doi.org/10.1016/S0969-806X(01)00622-33

    Article  ADS  Google Scholar 

  6. K. Hossain, Y. Avasn Maruthi, N. Lakshmana Das, K. P. Rawat, and K. S. S. Sarma, Appl. Water Sci. 8 (6), 1 (2018). https://doi.org/10.1007/s13201-018-0645-6

    Article  ADS  Google Scholar 

  7. P. A. Bystrov, Yu. S. Pavlov, O. V. Souvorova, and I. Yu. Yakupov, Radiat. Phys. Chem. 161, 83 (2019). https://doi.org/10.1016/j.radphyschem.2019.03.053

    Article  ADS  Google Scholar 

  8. P. A. Bystrov, A. V. Gordeev, A. Yu. Kolokolova, M.  A. Zavyalov, N. V. Ilyukhina, A. A. Molin, Y. S. Pavlov, S. P. Polyakova, A. V. Prokopenko, and V. P. Filippovich, Phys. Atom. Nucl. 81 (10), 1526 (2018). https://doi.org/10.1134/S1063778818110054

    Article  ADS  Google Scholar 

  9. Yu. S. Pavlov, Proc. 24th Int. Conf. “Radiation Solid State Physics,” Ed. by G. G. Bondarenko (NII PMT, Moscow, 2014), p. 22.

  10. S. Boucher, S. Kutsaev, and A. Murokh, in APS Division of Physics of Beams, Annual Newsletter, Ed. by M. Minty (APS Physics, USA, 2019), p. 24 [in Russian].

    Google Scholar 

  11. B. Yu. Bogdanovich, A. V. Nesterovich, A. E. Shikanov, M. F. Vorogushin, and Yu. A. Svistunov, Remote-Sensing Radiation Monitoring with Linear Accelerators (Energoatomizdat, Moscow, 2009), Vols. 1–2 [in Russian].

    Google Scholar 

  12. V. Y. Yu, A. Landers, K. Woods, D. Nguyen, M. Cao, D. Du, R. K. Chin, K. Sheng, and T. B. Kaprealian, Int. J. Radiat. Oncol. Biol. Phys. 101 (1), 144 (2018). https://doi.org/10.1016/j.ijrobp.2018.01.048

    Article  Google Scholar 

  13. P. Symonds and G. D. D. Jones, Clin. Oncol. 31 (7), 405 (2019). https://doi.org/10.1016/j.clon.2019.05.011

    Article  Google Scholar 

  14. G. Moroff and N. L. Luban, Transfus. Med. Rev. 11 (1), 15 (1997). https://doi.org/10.1016/S0887-7963(97)80006-5

    Article  Google Scholar 

  15. S. M. Telesz and J. M. Gomez, Proc. 18th World Conf. on Nondestructive Testing (Durban, South Africa, 2012), p. 611.

  16. J. R. Fanchi, Integrated Reservoir Asset Management: Principles and Best Practices (Gulf Professional, Houston, 2010.

    Google Scholar 

  17. J. F. Cameron and C. G. Clayton, Radioisotope Instruments. A Volume in International Series of Monographs in Nuclear Energy (Pergamon, Oxford, 1971).

    Google Scholar 

  18. G. M. Moore and M. A. Pomper, Permanent Risk Reduction: A Roadmap for Replacing High-Risk Radioactive Sources and Materials (President and Trustees of Middlebury College, Monterey, 2015).

    Google Scholar 

  19. N. P. Sobenin and B. V. Zverev, Electrodynamical Characteristics of Accelerating Cavities, 1st ed. (CRC, London, 1999).

    Google Scholar 

  20. T. Wangler, Principles of RF Linear Accelerators (Wiley, New York, 1998).

    Book  Google Scholar 

  21. L. W. Brady and T. E. Yaeger, Encyclopedia of Radiation Oncology (Springer, Berlin, 2013).

    Book  Google Scholar 

  22. S. Hanna, RF Linear Accelerators for Medical and Industrial Applications, 1st ed. (Artech House, 2012), p. 216.

    Google Scholar 

  23. V. I. Shvedunov, A. S. Alimova, A. N. Ermakova, A.  N.  Kamanina, V. V. Khankina, A. S. Kurilika, L. Yu. Ovchinnikova, N. I. Pakhomov, N. V. Shvedunov, D. S. Yurov, I. V. Shvedunov, and A. S. Simonov, Radiat. Phys. Chem. 159, 95 (2019). https://doi.org/10.1016/j.radphyschem.2019.02.044

    Article  ADS  Google Scholar 

  24. S. V. Kutsaev, N. P. Sobenin, A. A. Anisimov, M. Ferderer, A. A. Zavadtsev, and A. A. Krasnov, Proc. LINAC08 (Victoria, BC, Canada, 2008), p. THP058.

  25. L. Ovchinnikova and V. Shvedunov, Proc. 29th Linear Accelerator Conf. (LINAC 2018) (Beijin, China, 2018), p. TUPO097. https://doi.org/10.18429/JACoW-LINAC2018-TUPO097

  26. S. V. Kutsaev, R. Agustsson, A. Arodzero, S. Boucher, P. Burstein, and A. Yu. Smirnov, AIP Conf. Proc. 2160, 050014 (2019). https://doi.org/10.1063/1.5127706

    Article  Google Scholar 

  27. VMA 1647G Specifications. https://www.cpii.com/docs/datasheets/16/VMA1647-G%20ATC%20MAGNETRON%20NF%205-5-20.pdf.

  28. M. Dal Forno, V. Dolgashev, G. Bowden, C. Clarke, M. Hogan, D. McCormick, A. Novokhatski, B. Spataro, S. Weathersby, and S. G. Tantawi, Phys. Rev. Accel. Beams 19, 01130 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.011301

    Article  Google Scholar 

  29. E. M. Choi, C. Marchewka, I. Mastovsky, M. A. Shapiro, and J. R. Sirigiri, J. Phys.: Conf. Ser. 25 (1), 1 (2005). https://doi.org/10.1088/1742-6596/25/1/001

    Article  ADS  Google Scholar 

  30. M. A. K. Othman, J. Picard, S. Schaub, V. A. Dolgashev, S. M. Lewis, J. Neilson, A. Haase, S. Jawla, B. Spataro, R. J. Temkin, S. Tantawi, and E. A. Nanni, Appl. Phys. Lett. 117 (7), 073502 (2020). https://doi.org/10.1063/5.0011397

    Article  ADS  Google Scholar 

  31. S. V. Kutsaev, B. Jacobson, A. Yu. Smirnov, T. Campese, V. A. Dolgashev, V. Goncharik, M. Harrison, A. Murokh, E. Nanni, J. Picard, M. Ruelas, and S. C. Schaub, Phys. Rev. Appl. 11 (3), 034052 (2019). https://doi.org/10.1103/PhysRevApplied.11.034052

    Article  ADS  Google Scholar 

  32. A. V. Smirnov, R. Agustsson, W. J. Berg, J. Dooling, T. Campese, Y. Chen, D. Gavryushkin, L. Erwin, J. Hartzell, R. Keane, F. H. O’Shea, E. Spranza, S. Pasky, M. Ruelas, Y. Sun, and A. A. Zholents, Nucl. Instrum. Methods Phys. Res., Sect. A 960, 163655 (2020). https://doi.org/10.1016/j.nima.2020.163655

    Article  Google Scholar 

  33. S. Antipov, C. Jing, P. Schoessow, A. Kanareykin, V. Yakimenko, A. Zholents, and W. Gai, Rev. Sci. Instrum. 84, 022706 (2013). https://doi.org/10.1063/1.4790432

    Article  ADS  Google Scholar 

  34. W. Wuensch, CERN Courier (March 23, 2018). https://cerncourier.com/a/high-gradient-x-band-technologyfrom-tev-colliders-to-light-sources-and-more/.

  35. A. Zholents, W. Gai, S. Doran, R. Lindberg, J. G. Power, N. Strelnikov, Y. Sun, E. Trakhtenberg, I. Vasserman, C. Jing, A. Kanareykin, Y. Li, Q. Gao, D. Y. Shchegolkov, and E. I. Simakov, Nucl. Instrum. Methods Phys. Res., Sect. A 829, 190 (2016). https://doi.org/10.1016/j.nima.2016.02.003

    Article  Google Scholar 

  36. S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, Phys. Rev. Lett. 108, 144801 (2012). https://doi.org/10.1103/PhysRevLett.108.144801

    Article  ADS  Google Scholar 

  37. A. Grudiev, S. Calatroni, and W. Wuensch, Phys. Rev. Accel. Beams 12, 102001 (2009). https://doi.org/10.1103/PhysRevSTAB.12.102001

    Article  ADS  Google Scholar 

  38. D. P. Pritzkau and R. H. Siemann, Phys. Rev. Accel. Beams 5, 112002 (2002). https://doi.org/10.1103/PhysRevSTAB.5.112002

    Article  ADS  Google Scholar 

  39. V. A. Dolgashev, L. Faillace, Y. Higashi, A. Marcelli, B. Spataro, and R. Bonifazi, J. Instrum. 15, P01029 (2020). https://doi.org/10.1088/1748-0221/15/01/P01029

    Article  Google Scholar 

  40. J. B. Rosenzweig, A. Cahill, V. Dolgashev, C. Emma, A. Fukasawa, R. Li, C. Limborg, J. Maxson, P. Musumeci, A. Nause, R. Pakter, R. Pompili, R. Roussel, B. Spataro, and S. Tantawi, Phys. Rev. Accel. Beams 22, 023403 (2019). https://doi.org/10.1103/PhysRevAccelBeams.22.023403

    Article  ADS  Google Scholar 

  41. A. D. Cahill, J. B. Rosenzweig, V. A. Dolgashev, S. G. Tantawi, and S. Weathersby, Phys. Rev. Accel. Beams 21, 102002 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.102002

    Article  ADS  Google Scholar 

  42. D. Satoh, T. Shibuya, H. Ogawa, M. Tanaka, R. Kuroda, S. Mori, M. Yoshida, and H. Toyokawa, Nucl. Instrum. Methods Phys. Res., Sect. B 459, 148 (2019). https://doi.org/10.1016/j.nimb.2019.09.006

    Article  Google Scholar 

  43. Advanced Accelerator Development Strategy Report: DOE Advanced Accelerator Concepts Research Roadmap Workshop, Ed. by T. Antonsen (Washington, D.C., 2016).

    Google Scholar 

  44. A. E. Hussein, N. Senabulya, Y. Ma, M. J. V. Streeter, B. Kettle, S. J. D. Dann, F. Albert, N. Bourgeois, S. Cipiccia, J. M. Cole, O. Finlay, E. Gerstmayr, I. Gallardo Gonz’alez, A. Higginbotham, D. A. Jaroszynski, et al., Sci. Rep. 9, 3249 (2019). https://doi.org/10.1038/s41598-019-39845-4

    Article  ADS  Google Scholar 

  45. E. Gschwendtner and P. Muggli, Nat. Rev. Phys. 1, 246 (2019). https://doi.org/10.1038/s42254-019-0049-z

    Article  Google Scholar 

  46. M. C. Thompson, H. Badakov, A. M. Cook, J. B. Rosenzweig, R. Tikhoplav, G. Travish, I. Blumenfeld, M. J. Hogan, R. Ischebeck, N. Kirby, R. Siemann, D. Walz, P. Muggli, A. Scott, and R. B. Yoder, Phys. Rev. Lett. 100, 214801 (2008). https://doi.org/10.1103/PhysRevLett.100.214801

    Article  ADS  Google Scholar 

  47. F. Grüner, Physics 12, 1 (2019). https://doi.org/10.1103/Physics.12.19

    Article  Google Scholar 

  48. M. Nishiuchi, H. Sakaki, T. Hori, P. R. Bolton, K. Ogura, A. Sagisaka, A. Yogo, M. Mori, S. Orimo, A. S. Pirozhkov, I. Daito, H. Kiriyama, H. Okada, S. Kanazawa, S. Kondo, et al., Proc. IPAC’10 Conf. (Kyoto, Japan, 2010), p. 88.

  49. B. M. Hegelich, D. Jung, B. J. Albright, M. Cheung, B. Dromey, D. C. Gautier, C. Hamilton, S. Letzring, R. Munchhausen, S. Palaniyappan, R. Shah, H.-C. Wu, L. Yin, and J. C. Fernández, arXiv:1310.8650 [physics.plasm-ph] (2013).

  50. N. V. Sapra, K. Y. Yang, D. Vercruysse, K. J. Leedle, D. S. Black, R. J. England, L. S1, R. Trivedi, Y. Miao, O. Solgaard, R. L. Byer, and J. Vučković, Science 367 (6473), 79 (2020). https://doi.org/10.1126/science.aay5734

    Article  ADS  Google Scholar 

  51. J. Levesque and P. B. Corkum, Can. J. Phys. 84 (1), 1 (2006). https://doi.org/10.1139/P05-068

    Article  ADS  Google Scholar 

  52. S. Machida, R. Barlow, J. S. Berg, N. Bliss, R. K. Buckley, J. A. Clarke, M. K. Craddock, R. D’Arcy, R. Edgecock, J. M. Garland, Y. Giboudot, P. Goudket, S. Griffiths, C. Hill, S. F. Hill, et al., Nat. Phys. 8 (3), 243 (2012). https://doi.org/doi.org/10.1038/nphys2179

    Article  Google Scholar 

  53. Beam Dynamics Newsletter 43, Ed. by C.R. Prior (Int. Committee for Future Accelerators, USA, 2007).

  54. H. Aït Abderrahim, J. Galambos, Y. Gohar, S. Henderson, G. Lawrence, T. McManamy, A. C. Mueller, S.   Nagaitsev, J. Nolen, E. Pitcher, R. Rimmer, R. Sheffield, and M. Todosow, Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production. Report Number: FERMILAB-FN-0907-DI, LA-UR-10-06754 (Fermilab, USA, 2010).

    Google Scholar 

  55. S. V. Kutsaev, Z. A. Conway, P. N. Ostroumov, C. J.  Johnstone, and R. D. Ford, Proc. Cyclotrons Conf. (Vancouver, BC, Canada, 2013), p. MO3PB03.

  56. B. A. Shilyaev, L. S. Ozhigov, and A. A. Parkhomenko, Preprint (Nats. Sci. Center Kharkov Inst. Phys. Tech., Kharkov, 2006).

  57. L. G. Dubas, Mezhdunarod. Zh. Prikl. Fund. Issled., No. 3, 7 (2019). https://doi.org/10.17513/mjpfi.12675

  58. S. Kutsaev, R. Agustsson, A. Arodzero, S. Boucher, J. Hartzell, A. Murokh, F. O’Shea, and A. Yu. Smirnov, Phys. Procedia 90, 115 (2017). https://doi.org/10.1016/j.phpro.2017.09.036

    Article  ADS  Google Scholar 

  59. A. Arodzero, S. Boucher, J. Hartzell, S. V. Kutsaev, R. C. Lanza, V. Palermo, S. Vinogradov, and V. Ziskin, Proc. IEEE Nucl. Sci. Symp. and Medical Imaging Conf. (NSS/MIC) (San Jose, CA, USA, 2015), p. 16356934. https://doi.org/10.1109/NSSMIC.2015.7581836

  60. S. Ogorodnikov and V. Petrunin, Phys. Rev. Accel. Beams 5, 104701 (2002). https://doi.org/10.1103/PhysRevSTAB.5.104701

    Article  ADS  Google Scholar 

  61. A. A. Zavadtsev, D. A. Zavadtsev, A. A. Krasnov, N. P. Sobenin, S. V. Kutsaev, D. V. Churanov, and M. O. Urbant, Instrum. Exp. Tech. 54 (2), 241 (2011). https://doi.org/10.1134/S0020441211020114

    Article  Google Scholar 

  62. S. Benedetti, Proc. 29th Int. Linear Accelerator Conf. (Beijing, China, 2018), p. TH1P03.

  63. T. Kubiak, Br. J. Radiol. 89, 1066 (2016). https://doi.org/10.1259/bjr.20150275

    Article  Google Scholar 

  64. B. M. Oborn, S. Dowdell, P. E. Metcalf, S. Crozier, R. Mohan, and P. J. Keall, Med. Phys. 44 (8), 77 (2017). https://doi.org/10.1002/mp.12371

    Article  Google Scholar 

  65. B. Mustapha, B. Aydogan, J. Nolen, A. Nassiri, J. Noonan, M. Pankuch, J. Welsh, R. Schulte, and J. Robb, AIP Conf. Proc. 2160, 050009 (2019). https://doi.org/10.1063/1.5127701

    Article  Google Scholar 

  66. V. Khankin, A. Alimov, A. Ermakov, A. Kamanin, A. Kurilik, N. Pakhomov, I. Shvedunov, N. Shvedunov, V. Shvedunov, A. Simonov, and D. Yurov, Proc. 29th Linear Accelerator Conf. (LINAC 2018) (Beijing, China, 2018), p. MOPO062. https://doi.org/10.18429/JACoW-LINAC2018-MOPO062

  67. P. Apiwattanakul and S. Rimjaem, Nucl. Instrum. Methods Phys. Res., Sect. B 466, 69 (2020). https://doi.org/10.1016/j.nimb.2020.01.012

    Article  Google Scholar 

  68. B. Hidding, O. Karger, T. Königstein, G. Pretzler, G. G. Manahan, P. McKenna, R. Gray, R. Wilson, S. M. Wiggins, G. H. Welsh, A. Beaton, P. Delinikolas, D. A. Jaroszynski, J. B. Rosenzweig, et al., Sci. Rep. 7, 42354 (2017). https://doi.org/10.1038/srep42354

    Article  ADS  Google Scholar 

  69. J. H. E. Yong, T. McGowan, R. Redmond-Misner, J. Beca, P. Warde, E. Gutierrez, and J. S. Hoch, Curr. Oncol. 23 (3), 228 (2016). https://doi.org/10.3747/co.23.2998

    Article  Google Scholar 

  70. Yu. S. Pavlov, Abstr. Sci. Session Rep. Nat. Res. Nucl. Univ. MEPhI (MEPhI, Moscow, 2013), Vol. 2, p. 126 [in Russian].

    Google Scholar 

  71. M. R. Cleland, CAS–CERN Accelerator School: Small Accelerators (2006), pp. 383–416. https://doi.org/10.5170/CERN-2006-012.383

  72. C. Körner, Int. Mater. Rev. 61 (5), 361 (2014). https://doi.org/10.1080/09506608.2016.1176289

    Article  Google Scholar 

  73. Y. Li, B. Pan, M M. Tentzeris, and J. Papapolymerou, Proc. IEEE/MTT-S Int. Microwave Symp. (Honolulu, HI, USA, 2007), p. 1031–1034. https://doi.org/10.1109/MWSYM.2007.380233

  74. R. Agustsson, S. Boucher, and S. Kutsaev, World Patent Application WO2018222839A1 (2018).

  75. R. M. Sundelin, R. M. Sundelin, J. L. Kirchgessner, and M. Tigner, IEEE Trans. Nucl. Sci. 24 (3), 1686 (1977). https://doi.org/10.1109/TNS.1977.4329052

    Article  ADS  Google Scholar 

  76. O. N. Brezhnev, V. M. Pavlov, O. V. Pirogov, and Ju. D. Chernousov, Probl. At. Sci. Tech., No. 3, 65 (2001). http://dspace.nbuv.gov.ua/handle/123456789/79238.

  77. S. Tantawi, M. Nasr, Z. Li, C. Limborg, and P. Borchard, arXiv:1811.09925 [physics.acc-ph] (2018).

  78. M. Weglowski, S. Błacha, and A. Phillips, Vacuum 130, 72 (2016). https://doi.org/10.1016/j.vacuum.2016.05.004

    Article  ADS  Google Scholar 

  79. J. W. Elmer, J. Klingmann, and K. Van Bibber, Phys. Rev. Accel. Beams 4, 053502 (2001). https://doi.org/10.1103/PhysRevSTAB.4.053502

    Article  ADS  Google Scholar 

  80. S. Antipov, R. Kostin, S. Kuzikov, and A. Vikharev, Proc. 9th Int. Particle Accelerator Conf. (Vancouver, BC, Canada, 2018), p. WEPMF068. https://doi.org/10.18429/JACoW-IPAC2018-WEPMF068

  81. J. Scifo, A. Marcelli, B. Spataro, D. Hampai, S. Dabagov, S. Sarti, A. Di Trolio, R. Moscatelli, S. Macis, and L. Faillace, Instruments 3 (4), 61 (2019). https://doi.org/10.3390/instruments3040061

    Article  Google Scholar 

  82. S. V. Kutsaev, R. Agustsson, A. Arodzero, S. Boucher, A. Murokh, and A. Yu. Smirnov, Nucl. Instrum. Methods Phys. Res., Sect. B 459, 179 (2019). https://doi.org/10.1016/j.nimb.2019.08.029

    Article  Google Scholar 

  83. G. Dome, Linear Accelerators, Ed. by P. Lapostolle (North-Holland, Amsterdam, 1970).

    Google Scholar 

  84. M. Nasr and S. Tantawi, Proc. 9th Int. Particle Accelerator Conf. (IPAC 2018) (Vancouver, BC, Canada, 2018), pp. THPMK049. https://doi.org/10.18429/JACoW-IPAC2018-THPMK049

  85. S. P. Antipov, V. Dolgashev, and R. Kostin, Proc. 9th Int. Particle Accelerator Conf. (IPAC 2018) (Vancouver, BC, Canada, 2018), pp. WEPMF06907. https://doi.org/10.18429/JACoW-IPAC2018-WEPMF069

  86. V. A. Dolgashev, Proc. PAC’2003 Conf. (Portland, Oregon, USA, 2003), pp. 1267–1269. https://doi.org/10.1109/PAC.2003.1289674

  87. Copper Wire Tables (Technical Report), Circular of the Bureau of Standards No. 31, 3rd ed. (Nat. Bureau of Standards, Washington, D.C., Inst. Appl. Technol., 1914), NTIS Iss. No. 196610.

  88. Radiofrequency Accelerator R&D Strategy Report (U.S. Department of Energy, Washington D.C., USA, 2017). https://www.osti.gov/servlets/purl/1631119.

  89. A. Danagoulian, W. Bertozzi, C. L. Hicks, A. V. Klimenko, S. E. Korbly, R. J. Ledoux, and C. M. Wilson, Proc. IEEE Int. Conf. Technologies for Homeland Security (HST) (Waltham, MA, USA, 2010), p. 379. https://doi.org/10.1109/THS.2010.5654938

  90. A. J. Berejka, Radiat. Phys. Chem. 46 (4–6), 429 (1995). https://doi.org/10.1016/0969-806X(95)00188-4

    Article  ADS  Google Scholar 

  91. S. M. Seltzer, J. P. Farrell, and J. Silverman, IEEE Trans. Nucl. Sci. 30 (2), 1629 (1983). https://doi.org/10.1109/TNS.1983.4332602

    Article  ADS  Google Scholar 

  92. J. D. Hunt and G. Alliger, Radiat. Phys. Chem. 14 (1–2), 39 (1979). https://doi.org/10.1016/0146-5724(79)90010-4

    Article  ADS  Google Scholar 

  93. E. W. Bennett, Radiat. Phys. Chem. 14 (3–6), 947 (1979). https://doi.org/10.1016/0146-5724(79)90132-8

    Article  ADS  Google Scholar 

  94. B. P. Fairand, Radiation Sterilization for Health Care Products, X-Ray, Gamma, and Electron Beam (CRC, Boca Raton, Florida, 2002).

    Google Scholar 

  95. A. Yu. Gracheova, M. A. Zav’yalov, N. V. Ilyukhina, V.   A. Kukhto, V. T. Tarasyuk, V. P. Filippovich, A.  V. Egorkin, A. V. Chasovskikh, Yu. S. Pavlov, A. V. Prokopenko, N. E. Strokova, S. A. Artem’ev, and S. P. Polyakova, Phys. At. Nucl. 79 (14), 1682 (2016). https://doi.org/10.1134/S1063778816140118

    Article  Google Scholar 

  96. Y. S. Pavlov, A. A Revina, O. V. Souvorova, N. L. Voropaeva, D. V. Chekmar, E. V. Abkhalimov, M. A. Zavyalov, and V. P. Filippovich, J. Phys.: Conf. Ser. 941, 012098 (2017). https://doi.org/10.1088/1742-6596/941/1/012098

    Article  Google Scholar 

  97. A. G. Chmielewsk, E. Iller, B. Tyminski, Z. Zimek, and J. Licki, Mod. Power Syst., No. 5, 53 (2002). https://www.modernpowersystems.com/features/featurefluegas- treatment-by-electron-beam-technology

  98. H. Podlech, CERN Yellow Report CERN-2013-001 (2013), pp. 151–170. https://doi.org/10.5170/CERN-2013-001.151

  99. H. Padamsee, RF Superconductivity: Science, Technology, and Applications (Wiley–VCH, Weinheim, 2009).

  100. R. Nagimov, I. Bylinsky, D. Kishi, S. Koscielniak, A. Koveshnikov, R. Laxdal, and D. Yosifov, Proc. 9th Int. Particle Accelerator Conf. (IPAC 2018) (Vancouver, BC, Canada, 2018), pp. THPAL121. https://doi.org/10.18429/JACoW-IPAC2018-THPAL121

  101. R. Radebaugh, J. Phys.: Condens. Matter 21, 164219 (2009). https://doi.org/10.1088/0953-8984/21/16/164219

    Article  ADS  Google Scholar 

  102. W. E. Gifford, in Advances in Cryogenic Engineering, Ed. by K. D. Timmerhaus (Springer, Boston, 1966), Vol. 11, pp. 152–159. https://doi.org/10.1007/978-1-4757-0522-5_16

  103. A. de Waele, J. Low Temp. Phys. 164 (5–6), 179 (2011). https://doi.org/doi.org/10.1007/s10909-011-0373-x

    Article  ADS  Google Scholar 

  104. S. Posen and D. L. Hall, Supercond. Sci. Technol. 30 (3), 033004 (2017). https://doi.org/10.1088/1361-6668/30/3/033004

    Article  ADS  Google Scholar 

  105. T. Tan, M. A. Wolak, X. X. Xi, T. Tajima, and L. Civale, Sci. Rep. 6, 35879 (2016). https://doi.org/10.1038/srep35879

    Article  ADS  Google Scholar 

  106. R. C. Dhuley, R. Kostin, O. Prokofiev, M. I. Geelhoed, T. H. Nicol, S. Posen, J. C. T. Thangaraj, T. K. Kroc, and R. D. Kephart, IEEE Trans. Appl. Supercond. 29 (5), 0500205 (2019). https://doi.org/10.1109/TASC.2019.2901252

    Article  Google Scholar 

  107. J. Y. Benitez, A. Donoghue, M. B. Johnson, W. Lu, B. Ninemire, L. Phair, D. S. Todd, and D. Xie, Proc. Radiation Effects Data Workshop (REDW) (New Orleans, LA, USA, 2017), pp. 1–5. https://doi.org/10.1109/NSREC.2017.8115438

  108. T. C. Kaspar, C. A. Lavender, and M. W. Dibert, Report no. PNNL-26490 (Pacific Northwest Nat. Lab. Richland, Washington, USA, 2017).

  109. J. Kang and F. N. von Hippel, Sci. Global Secur. 9 (1), 1 (2001).

    Article  ADS  Google Scholar 

  110. A. S. Erickson, Ph.D. Thesis (Massachusetts Inst. Technol., Boston, MA, USA, 2011).

  111. J. Bendahan, Nucl. Instrum. Methods Phys. Res., Sect. A 954, 161120 (2020). https://doi.org/10.1016/j.nima.2018.08.079

    Article  Google Scholar 

  112. A. M. I. Alsayyed, K. J. Dale, J. F. Diehl, J. Farkas, M. Frissel, H. Fröhlich, J. H. Hubbel, J. R. Lujan, G. Pauli, K. W. Bögl, A. Brynjolfsson, F. K. Käferstein, A.-M. Schmitt-Hannig, R. B. Singh, H. Stiff, et al., Bull. W. H. O. 68 (3), 297 (1990).

    Google Scholar 

  113. D. O. Spirin, Ya. A. Berdnikov, and Yu. N. Gavrish, Nauchno-Tekn. Vedom. St. Petersburg Gos. Politekh. Univ., No. 2 (98), 120 (2010).

  114. W. G. J. Langeveld, AIP Conf. Proc. 2160, 050018 (2019). https://doi.org/10.1063/1.5127710

    Article  Google Scholar 

  115. W. G. J. Langeveld, Phys. Procedia 90, 291 (2017). https://doi.org/10.1016/j.phpro.2017.09.014

    Article  ADS  Google Scholar 

  116. J. Callerame, Powder Diffr. 21 (2), 132 (2006). https://doi.org/https://doi.org/10.1154/1.2204054

    Article  ADS  Google Scholar 

  117. A. Arodzero, S. Boucher, P. Burstein, S. V. Kutsaev, R. C. Lanza, and V. Palermo, Proc. Int. Symp. on Technologies for Homeland Security (HST) (Woburn, MA, USA, 2019), p. 1. https://doi.org/10.1109/HST47167.2019.9032928

  118. Z. An, L. Tian, J. Zhu, and M. Liua, Data Brief 17, 744 (2018). https://doi.org/10.1016/j.dib.2018.01.111

    Article  Google Scholar 

  119. A. Arodzero, US Patent Application US20110163236A1 (2011).

  120. A. Arodzero, S. Boucher, J. Hartzell, S. V. Kutsaev, R. C. Lanza, V. Palermo, S. Vinogradov, and V. Ziskin, Proc. Nucl. Sci. Symp. and Medical Imaging Conf. (San Diego, CA, USA. 2015), p. 1. https://doi.org/10.1109/NSSMIC.2015.7581836

  121. A. Arodzero, S. V. Kutsaev, and V. Ziskin, US Patent 10481113, 20170336526 (2017).

  122. I. Gadjev, N. Sudar, M. Babzien, J. Duris, P. Hoang, M. Fedurin, K. Kusche, R. Malone, P. Musumeci, M. Palmer, I. Pogorelsky, M. Polyanskiy, Y. Sakai, C. Swinson, O. Williams, and J. B. Rosenzweig, Sci. Rep. 9, 532 (2019). https://doi.org/10.1038/s41598-018-36423-y

    Article  ADS  Google Scholar 

  123. S. V. Kutsaev, R. Agustsson, A. Arodzero, S. Boucher, L. Faillace, J. Hartzell, and V. Ziskin, Proc. Nucl. Sci. Symp. and Medical Imaging Conf. (San Diego, CA, USA, 2015), pp. 1–7. https://doi.org/10.1109/NSSMIC.2015.7581765

  124. Vehicle Weight Classes & Categories, United States Department of Energy Document. https://afdc.energy.gov/data/10380.

  125. J. Hašek, X-Ray and Neutron Structure Analysis in Materials Science (Springer, Boston, MA, 1989).

    Book  Google Scholar 

  126. S. V. Kutsaev, R. Agustsson, A. Arodzero, R. Berry, S. Boucher, Y. Chen, J. Hartzell, B. Jacobson, A. Laurich, A. Murokh, E. Savin, A. Yu. Smirnov, and A. Verma, Proc. NAPAC’16 Conf. (Chicago, IL, USA, 2016), p. TUPOA68. https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA68

  127. O. A. Val’dner, A. D. Vlasov, and A. V. Shal’nov, Linear Accelerators (Atomizdat, Moscow, 1969) [in Russian].

    Google Scholar 

  128. V. A. Moskalev and G. I. Sergeev, Betatron: An Electron Induction Accelerator (Tomsk Politekh. Univ., Tomsk, 2014) [in Russian].

    Google Scholar 

  129. S. Chakhov, S. V. Kasyanov, V. A. Kasyanov, S. P. Osipov, M. M. Stein, A. M. Stein, and S. Xiaoming, J. Phys.: Conf. Ser. 671, 012024 (2016). https://doi.org/10.1088/1742-6596/671/1/012024

    Article  Google Scholar 

  130. B. V. Solomatin, Sov. Phys. J. 13, 1046 (1970). https://doi.org/10.1007/BF00818565

    Article  Google Scholar 

  131. A. Arodzero, S. Boucher, S. V. Kutsaev, R. C. Lanza, V. Palermo, F. O’Shea, and V. Ziskin, Proc. Nucl. Sci. Symp., Medical Imaging Conf. and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD) (Strasbourg, France, 2016), p. 1. https://doi.org/10.1109/NSSMIC.2016.8069705

  132. W. Bertozzi and R. J. Ledoux, US Patent US8718219B2 (2014).

  133. J. M. Bassaler, J. M. Capdevila, O. Gal, F. Lainé, A. Nguyen, J. P. Nicolaï, and K. Umiastowski, Nucl. Instrum. Methods Phys. Res., Sect. B 68 (1–4), 92 (1992). https://doi.org/10.1016/0168-583X(92)96056-5

    Article  Google Scholar 

  134. V. I. Shvedunov, A. S. Alimov, A. S. Chepurnov, O. V. Chubarov, I. V. Gribov, B. S. Ishkhanov, I. V. Surma, and A. V. Tiunov, Proc. Particle Accelerator Conf. (Washington, DC, USA, 1993), p. 2059. https://doi.org/10.1109/PAC.1993.309222

  135. P. H. Debenham, S. Penner, R. L. Ayres, R. I. Cutler, E. R. Lindstrom, D. L. Mohr, J. E. Rose, M. A. D. Wilson, N. R. Yoder, L. M. Young, R. E. Martin, A. Mitra, J. M. Potter, R. H. Stokes, P. J. Tallerico, and L. Wilkerson, IEEE Trans. Nucl. Sci. 30 (2), 1391 (1983). https://doi.org/10.1109/TNS.1983.4332540

    Article  ADS  Google Scholar 

  136. A. N. Ermakov, B. S. Ishkhanov, A. N. Kamanin, N.  I.  Pakhomov, V. V. Khankin, V. I. Shvedunov, N. V. Shvedunov, E. E. Zhuravlev, A. I. Karev, and N. P. Sobenin, Instrum. Exp. Tech. 61, 173 (2018). https://doi.org/10.1134/S0020441218020136

    Article  Google Scholar 

  137. V. I. Veksler, Usp. Fiz. Nauk 93, 521 (1967). https://doi.org/10.3367/UFNr.0093.196711k.0521

    Article  Google Scholar 

  138. A. V. Smirnov, R. Agustsson, R. Berry, S. Boucher, Y. Chen, S. Kutsaev, and F. O’Shea, Nucl. Instrum. Methods Phys. Res., Sect. A 953, 163160 (2020). https://doi.org/10.1016/j.nima.2019.163160

    Article  Google Scholar 

  139. A. Jankowiak, Eur. Phys. J. A 28, 149 (2006). https://doi.org/10.1140/epja/i2006-09-016-3

    Article  ADS  Google Scholar 

  140. E. S. Marshall, Thesis (Master) (Massachusetts Institute of Technology, Boston, 2012).

  141. J. Medalia, Detection of Nuclear Weapons and Materials: Science, Technologies, Observations (BiblioGov, USA, 2013).

    Google Scholar 

  142. P. B. Rose and A. S. Erickson, Phys. Rev. C 97, 064305 (2018). https://doi.org/10.1103/PhysRevC.97.064305

    Article  ADS  Google Scholar 

  143. J. Nattress, F. Sutanto, P.-W. Fang, Y.-Z. Chen, A. Cheng, K.-Y. Chu, T.-S. Duh, H.-Y. Tsai, M.-W. Lin, and I. Jovanovic, arXiv:1911.05458v1 [nucl-ex] (2019).

  144. L. Smith, Nucl. Instrum. Methods 18–19, 397 (1962). https://doi.org/10.1016/S0029-554X(62)80050-0

  145. P. W. Schmor, Rev. Accel. Sci. Technol. 4, 103 (2011). https://doi.org/10.1142/S1793626811000574

    Article  Google Scholar 

  146. A. N. Lebedev and A. V. Shal’nov, Principles of Accelerator Physics and Technology, 2nd ed. (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  147. J. Vincent, G. Blosser, G. Horner, K. Stevens, N. Usher, X. Wu, S. Vorozhtsov, and V. Smirnov, Proc. 21st Int. Conf. on Cyclotrons and Their Applications (Cyclotrons 2016) (Switzerland, 2016), p. THB02.

  148. H. H. Tsai, H. C. Li, F. Z. Hsiao, S. H. Chang, and W. S. Chiou, Proc. EPAC’08 (Genoa, Italy, 2008), p. WEPD044.

  149. S. Zaremba and W. Kleeven, in CERN Yellow Report CERN-2017-004-SP (2017), p. 177. https://doi.org/10.23730/CYRSP-2017-001.177

  150. J. Schippers, in CERN Yellow Report CERN-2017-004-SP (2017), pp. 165–175. https://doi.org/10.23730/CYRSP-2017-001.165

  151. A. L Radovinsky, US Patent US10028369B2 (2018).

  152. V. Smirnov and S. Vorozhtsov, Phys. Part. Nucl. 47 (5), 863 (2016). https://doi.org/10.1134/S1063779616050051

    Article  Google Scholar 

  153. R. C. Lanza, G. Kohse, D. Williams, B. W. Blackburn, R. Sheffield, and L. Waters, Proc. Int. Top. Meeting on Nuclear Research Applications and Utilization of Accelerators (Vienna, Austria, 2009), p. SM/EN-08.

  154. P. B. Rose, A. S. Erickson, M. Mayer, J. Nattress, and I. Jovanovic, Sci. Rep. 6, 24388 (2016). https://doi.org/10.1038/srep24388

    Article  ADS  Google Scholar 

  155. B. E. O’Day, Z. S. Hartwig, R. C. Lanza, and A. Danagoulian, Nucl. Instrum. Methods Phys. Res., Sect. A 832, 68 (2016). https://doi.org/10.1016/j.nima.2016.05.117

    Article  Google Scholar 

  156. C. P. J. Barty, Proc. Int. Symp., Ed. by H. Takehito (World Sci., 2015), pp. 85–95. https://doi.org/10.1142/9789814635455_0011

  157. C. Johnstone, R. Agustsson, S. Boucher, S. Kutsaev, A. Y. Smirnov, and R. C. Lanza, Proc. 22st Int. Conf. on Cyclotrons and their Applications (Cape Town, South Africa, 2019), p. TUPO29. https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP029

  158. J.-M. Le Goff, Presentation at Technology and Innovation Workshop European Physical Society (Erice, Italy, 2012). https://indico.cern.ch/event/215087/contributions/435158/attachments/342214/477456/Legoff.pdf.

  159. J. Pruet, D. P. McNabb, C. A. Hagmann, F. V. Hartemann, and C. P. J. Barty, J. Appl. Phys. 99, 123102 (2006). https://doi.org/10.1063/1.2202005

    Article  ADS  Google Scholar 

  160. P. Sprangle, A. Ting, E. Esarey, and A. Fisher, J. Appl. Phys. 72, 5032 (1992). https://doi.org/10.1063/1.352031

    Article  ADS  Google Scholar 

  161. R. Hajima, T. Hayakawa, N. Kikuzawa, and E. Minehara, J. Nucl. Sci. Technol. 45 (5), 441 (2008). https://doi.org/10.3327/jnst.45.441

    Article  Google Scholar 

  162. A. Solodko, S. Atieh, N. Catalán Lasheras, A. Grudiev, S. Lebet, W. Wuensch, and H. Zha, Proc. IPAC’2017 (Copenhagen, Denmark, 2017), p. THPAB039. https://doi.org/10.18429/JACoW-IPAC2017-THPAB039

  163. A. Bacci, D. Alesini, P. Antici, M. Bellaveglia, R. Boni, E. Chiadroni, A. Cianchi, C. Curatolo, G. Di Pirro, A.  Esposito, M. Ferrario, A. Gallo, G. Gatti, A. Ghigo, M. Migliorati, et al., J. Appl. Phys. 113, 194508 (2013). https://doi.org/10.1063/1.4805071

    Article  ADS  Google Scholar 

  164. J. B. Rosenzweig, A. Valloni, D. Alesini, G. Andonian, N. Bernard, L. Faillace, L. Ficcadenti, A. Fukusawa, B. Hidding, M. Migliorati, A. Mostacci, P. Musumeci, B. O’Shea, L. Palumbo, B. Spataro, and A. Yakuba, Nucl. Instrum. Methods Phys. Res., Sect. A 657 (1), 99 (2011). https://doi.org/10.1016/j.nima.2011.05.046

    Article  Google Scholar 

  165. S. V. Kutsaev, N. P. Sobenin, A. Yu. Smirnov, D. S. Kamenschikov, M. A. Gusarova, K. I. Nikolskiy, A. A. Zavadtsev, and M. V. Lalayan, Nucl. Instrum. Methods Phys. Res., Sect. A 636 (1), 13 (2011). https://doi.org/10.1016/j.nima.2011.01.047

    Article  Google Scholar 

  166. A. Ovodenko, R. Agustsson, M. Babzien, T. Campese, M. Fedurin, A. Murokh, I. Pogorelsky, M. Polyanskiy, J. Rosenzweig, Y. Sakai, T. Shaftan, and C. Swinson, Appl. Phys. Lett. 109, 253504 (2016). https://doi.org/10.1063/1.4972344

    Article  ADS  Google Scholar 

  167. F. E. Carroll, M. H. Mendenhall, R. H. Traeger, C. Brau, and J. W. Waters, Am. J. Roentgenol. 181 (5), 1197 (2003). https://doi.org/10.2214/ajr.181.5.1811197

    Article  Google Scholar 

  168. D. F. Sunday, S. List, J. S. Chawla, and R. J. Kline, J. Appl. Crystallogr. 48, 1355 (2015). https://doi.org/10.1107/S1600576715013369

    Article  Google Scholar 

  169. D. J. Gibson, S. G. Anderson, F. V. Hartemann, C. W. Siders, A. M. Tremaine, and C. P. J. Barty, AIP Conf. Proc. 877, 602 (2006). https://doi.org/10.1063/1.2409190

    Article  ADS  Google Scholar 

  170. A. Bacci, I. Drebot, L. Serafini, V. Torri, V. Petrillo, M. Rossetti Conti, E. Puppin, D. Alesini, M. Bellaveglia, F. Bisesto, B. Buonomo, G. Di Pirro, A. Esposito, F. Iungo, et al., Proc. IPAC’2016 (Busan, Korea, 2016), p. 1747.

  171. S. Ion, Proc. R. Soc., Ser. A 473 (2198), 20160815 (2017). https://doi.org/10.1098/rspa.2016.0815

  172. A. V. Spitsyn, N. P. Bobyr, T. V. Kulevoy, P. A. Fedin, A. I. Semennikov, and V. S. Stolbunov, Fusion Eng. Des. 146 (A), 1313 (2019). https://doi.org/10.1016/j.fusengdes.2019.02.065

  173. P. Yvon, Structural Materials for Generation IV Nuclear Reactors (Woodhead, 2017).

    Google Scholar 

  174. Hj. Matzke, Nucl. Instrum. Methods Phys. Res., Sect. B 116 (1–4), 121 (1996). https://doi.org/10.1016/0168-583X(96)00021-3

    Article  Google Scholar 

  175. L. S. Tong, Nucl. Eng. Des. 73 (1), 3 (1982). https://doi.org/10.1016/0029-5493(82)90299-0

    Article  Google Scholar 

  176. D. G. Cacuci, Handbook of Nuclear Engineering (Springer, Boston, MA, 2010).

    Book  Google Scholar 

  177. Research Reactors for Development of Materials and Fuels for Innovative Nuclear Energy Systems (IAEA, Vienna, 2017).

  178. T. R. Allen, J. T. Busby, R. L. Klueh, S. A. Maloy, and M. B. Toloczko, JOM 60 (1), 15 (2018). https://doi.org/10.1007/s11837-008-0002-6

    Article  Google Scholar 

  179. S. V. Kutsaev, B. Mustapha, P. N. Ostroumov, J. Nolen, A. Barcikowski, M. Pellin, and A. Yacout, Rev. Sci. Instrum. 88, 033302 (2017). https://doi.org/10.1063/1.4978280

    Article  ADS  Google Scholar 

  180. D. Leitner, M. L. Galloway, T. J. Loew, C. M. Lyneis, I. Castro Rodriguez, and D. S. Todd, Rev. Sci. Instrum. 79, 02C710 (2008). https://doi.org/10.1063/1.2816790

  181. P. N. Ostroumov, B. Mustapha, A. Barcikowski, C. Dickerson, A. A. Kolomiets, S. A. Kondrashev, Y. Luo, D. Paskvan, A. Perry, D. Schrage, S. I. Sharamentov, R. Sommer, W. Toter, and G. Zinkann, Phys. Rev. Accel. Beams 15, 110101 (2012). https://doi.org/10.1103/PhysRevSTAB.15.110101

    Article  ADS  Google Scholar 

  182. A. S. Plastun and P. N. Ostroumov, Phys. Rev. Accel. Beams 21, 030102 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.030102

    Article  ADS  Google Scholar 

  183. M. A. Green, AIP Conf. Proc. 985, 872 (2008). https://doi.org/10.1063/1.2908683

    Article  ADS  Google Scholar 

  184. P. Hosemann, Rev. Accel. Sci. Technol. 4 (1), 161 (2011). https://doi.org/10.1142/S1793626811000513

    Article  Google Scholar 

  185. Nat. Res. Council, Radiation Source Use and Replacement: Abbreviated Version (Nat. Acad., Washington, DC, 2008).

  186. C. D. Ferguson, T. Kazi, and J. Perera, Commercial Radioactive Sources: Surveying the Security Risk (Monterey Inst. Int. Studies, Washington, DC, 2003).

  187. G. M. Moore and M. A. Pomper, Permanent Risk Reduction: A Roadmap for Replacing High-Risk Radioactive Sources and Materials (Monterey Inst. Int. Studies, Washington, DC, 2015).

  188. R. Talman, Accelerator X-Ray Sources, 1st ed. (Wiley–VCH, Weinheim, 2006).

  189. Categorization of Radioactive Sources (IAEA, VIENNA, 2003).

  190. R. Firestone, Table of Isotopes: 1999 Update, 8th ed. (Wiley–VCH, Weinheim, 1999).

  191. K. E. Ekstrand and W. H. Barnes, Int. J. Radiat. Oncol. Biol. Phys. 18, 249 (1990). https://doi.org/10.1016/0360-3016(90)90290-z

    Article  Google Scholar 

  192. C. P. Joshi, S. Dhanesar, J. Darko, A. Kerr, P. B. Vidyasagar, and L. J. Schreiner, J. Med. Phys. 34 (3), 137 (2009). https://doi.org/10.4103/0971-6203.54847

    Article  Google Scholar 

  193. J. W. Wang, High Energy Phys. Nucl. Phys. 30, 11 (2006). https://www.osti.gov/servlets/purl/897757.

    Google Scholar 

  194. T. Yamamoto, T. Natsui, N. Yusa, K. Dobashi, M. Uesaka, T. Higo, S. Fukuda, Mi. Akemoto, M. Yoshida, T. Takatomi, N. Kudoh, E. Tanabe, N. Nakamura, S. Morita, and M. Yamamoto, Proc. Int. Vacuum Electronics Conf. (Kitakyushu, Japan, 2007), p. 1. https://doi.org/10.1109/IVELEC.2007.4283405

  195. S. Boucher, R. Agustsson, L. Faillace, J. Hartzell, A. Murokh, A. Smirnov, S. Storms, and K. Woods, Proc. IPAC’2012 (New Orleans, LA, USA, 2012), p. THPPR069.

  196. V. V. Paramonov, Doctoral Dissertation in Mathematics and Physics (Inst. Nucl. Res., Russ. Acad. Sci., Moscow, 2002).

  197. V. I. Kaminskii, Doctoral Dissertation in Technical Sciences (Nat. Res. Nucl. Univ. MEPhI, Moscow, 1999).

  198. M. P. J. Gaudreau, J. A. Casey, T. P. Hawkey, J. M. Mulvaney, M. A. Kempkes, and P. Ver, Proc. Particle Accelerator Conf. (New York, USA, 1999), p. 1491.

  199. A. A. Zavadtsev, D. A. Zavadtsev, D. V. Churanov, and D. A. Zybin, Proc. RuPAC’2016 (St. Petersburg, Russia, 2016), p. THPSC027.

  200. D. Delacroix, J. P. Guerre, P. Leblanc, and C. Hickman, Radiation Protection Dosimetry—Radionuclide and Radiation Protection Data Handbook (Nucl. Technol., Kent, 2002).

    Google Scholar 

  201. D. Lison, in Handbook on the Toxicology of Metals, Ed. by G. F. Nordberg, 3rd ed. (Academic, 2007), p. 511. https://doi.org/doi.org/10.1016/B978-012369413-3/50080-X

    Google Scholar 

  202. K. D. Ianakiev, J. M. Goda, T. R. Hill, C. E. Moss, J. J. Ong, M. T. Paffett, R. F. Parker, and M. T. Swinhoe, J. Radioanal. Nucl. Chem. 282, 657 (2009). https://doi.org/10.1007/s10967-009-0268-3

    Article  Google Scholar 

  203. K. J. Aaldijk, Th. van der Kaa, and V. A. Wichers, Report #IAEA-SM-351/99P (IAEA, 1999). https://inis.iaea.org/collection/NCLCollectionStore_Public/30/014/30014819.pdf.

  204. A. Lebrun, S. C. Kane, L. Bourva, S. Poirier, N. E. Loghin, and D. Langlands, Proc. Adv. Nucl. Instrum. Measurement Methods and Their Appl. Conf. (Marseille, France, 2009), p. 1. https://doi.org/10.1109/ANIMMA.2009.5503777

  205. D. A. Close, J. C. Pratt, and H. F. Atwater, Nucl. Instrum. Methods Phys. Res., Sect. A 240 (2), 398 (1985). https://doi.org/10.1016/0168-9002(85)90656-4

    Article  Google Scholar 

  206. W. Bush, D. Langlands, J. Cooley, and N. Tuley, Proc. Symp. Int. Safeguards: Addressing Verification Challenges (Vienna, Austria, 2006), p. 174.

  207. S. Wichmann, C. Johnson, and V. Suarino, J. Nucl. Med. 47 (1), 558 (2006).

    Google Scholar 

  208. H. Griffiths, L. Cohen, S. Watts, E. Mokole, C. Baker, M. Wicks, and S. Blunt, Proc. IEEE 103 (1), 85 (2015). https://doi.org/10.1109/JPROC.2014.2365517

    Article  Google Scholar 

  209. A. A. Podimsky and N. N. Potrakhov, J. Phys.: Conf. Ser. 808, 012011 (2017). https://doi.org/10.1088/1742-6596/808/1/012011

    Article  Google Scholar 

  210. Gamma Irradiators for Radiation Processing (IAEA, Vienna, 2005).

  211. S. Kumar, J. Nucl. Energy Sci. Power Gener. Technol. 5 (1) (2016). https://doi.org/10.4172/2325-9809.1000144

  212. W. Li, Y. Liua, T. Shu, H. Yang, Y. Fan, C. Yuan, and J. Zhang, Phys. Plasmas 19, 013105 (2012). https://doi.org/10.1063/1.3677882

    Article  ADS  Google Scholar 

  213. F. Lagoutine, J. Legrand, C. Perrot, J. P. Brethon, and J. Morel, Int. J. Appl. Radiat. Isot. 23 (5), 219 (1972). https://doi.org/10.1016/0020-708X(72)90058-0

    Article  Google Scholar 

  214. C. Hellier, Handbook of Nondestructive Evaluation, 2nd ed. (McGraw-Hill, New York, 2003).

    Google Scholar 

  215. M. E. Alden and M. Mohiuddin, Int. J. Radiat. Oncol. Biol. Phys. 28 (4), 945 (1994). https://doi.org/10.1016/0360-3016(94)90115-5

    Article  Google Scholar 

  216. S. Coll, The Unthinkable (The New Yorker, 2007). https://www.newyorker.com/magazine/2007/03/12/the-unthinkable-2.

  217. P. Zou, W. Gai, R. Konecny, and X. Sun, Rev. Sci. Instrum. 71, 2301 (2000). https://doi.org/10.1063/1.1150446

    Article  ADS  Google Scholar 

  218. A. Kanareykin, I. L. Sheinman, and A. M. Al’tmark, Tech. Phys. Lett. 28, 916 (2002). https://doi.org/10.1134/1.1526882

    Article  ADS  Google Scholar 

  219. M. A. Gusarova, V. I. Kaminsky, L. V. Kravchuk, S. V. Kutsaev, M. V. Lalayan, N. P. Sobenin, and S. G. Tarasov, Nucl. Instrum. Methods Phys. Res., Sect. A 599 (1), 100 (2009). https://doi.org/10.1016/j.nima.2008.09.047

    Article  Google Scholar 

  220. P. Schoessow, S. P. Antipov, C. Jing, A. Kanareykin, S. Zuo, J. G. Power, and A. Zholents, Proc. PAC’2013 (Pasadena, CA USA, 2013), p. MOPAC12.

  221. A. E. Engin, A. Tambawala, M. Swaminathan, S. Bhattacharya, P. Pramanik, and K. Yamazaki, Proc. 57th Electronic Components and Technology Conf. (Reno, NV, 2007), pp. 792–797. https://doi.org/10.1109/ECTC.2007.373888

  222. A. V. Smirnov and E. Savin, Nucl. Instrum. Methods Phys. Res., Sect. A 820, 48 (2016). https://doi.org/10.1016/j.nima.2016.03.009

    Article  Google Scholar 

  223. V. G. Andreev and V. V. Pashkovskii, Sov. Phys.-Tech. Phys. 15, 405 (1970).

    ADS  Google Scholar 

  224. V. V. Paramonov, Proc. LINAC’2012 (Tel-Aviv, Israel, 2012), p. MOPB081.

  225. A. V. Smirnov, S. Boucher, S. Kutsaev, J. Hartzell, and E. Savin, Nucl. Instrum. Methods Phys. Res., Sect. A 830, 294 (2016). https://doi.org/10.1016/j.nima.2016.06.015

    Article  Google Scholar 

  226. D. Satoh, M. Yoshida, and N. Hayashizaki, Phys. Rev. Accel. Beams 19, 011302 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.011302

    Article  ADS  Google Scholar 

  227. P. Zou, L. Xiao, X. Sun, and W. Gai, J. Appl. Phys. 90, 2017 (2001). https://doi.org/10.1063/1.1383578

    Article  ADS  Google Scholar 

  228. R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications (Wiley, New Jersey, 2018).

    Book  Google Scholar 

  229. N. McN Alford, J. Breeze, X. Wang, S. J. Penn, S. Dalla, S. J. Webb, N. Ljepojevic, and X. Aupi, J. Eur. Ceram. Soc. 21 (15), 2605 (2001). https://doi.org/10.1016/S0955-2219(01)00324-7

    Article  Google Scholar 

  230. M. Furuya and A. Ochi, Jpn. J. Appl. Phys. 33, 5482 (1994). https://doi.org/10.1143/JJAP.33.5482

    Article  ADS  Google Scholar 

  231. M. P. Unterweger, D. D. Hoppes, F. J. Schima, and J. S. Coursey, Radionuclide Half-Life Measurements Data (Nat. Inst. Standards Technol., 2009). https://www.nist.gov/pml/radionuclide-half-life-measurements/ radionuclide-half-life-measurements-data.

  232. Ya. van Koey, Byull. MAGATE 23 (3), 37 (1981). https://www.iaea.org/sites/default/files/23305783336_ru.pdf.

  233. J. F. Cameron and M. S. Bourne, Int. J. Appl. Radiat. Isot. 3 (1), 15 (1958). https://doi.org/10.1016/0020-708X(58)90051-6

    Article  Google Scholar 

  234. B. Yu. Bogdanovich, K. I. Kozlovskii, A. V. Nesterovich, A. E. Shikanov, A. V. Il’inskii, and E. G. Urmanov, At. Energy 122, 271 (2017). https://doi.org/10.1007/s10512-017-0266-4

    Article  Google Scholar 

  235. C. C. Fung, K. W. Wong, H. Eren, and R. Charlebois, Proc. Int. Conf. on Neural Networks (ICNN’95) (Perth, WA, Australia, 1995), Vol. 1, pp. 526–531. https://doi.org/10.1109/ICNN.1995.488233

  236. Frontier Technology Corporation, Oil Well & Borehole Logging. https://www.frontier-cf252.com/welllogging/.

  237. B. Steingrimsson, in SDG Short Course III on Geothermal Reservoir Characterization: Well Logging, Well Testing and Chemical Analysis (Santa Tecla, El Salvador, 2018).

    Google Scholar 

  238. W. E. Stein, IEEE Trans. Nucl. Sci. 30 (2), 1434 (1983). https://doi.org/10.1109/TNS.1983.4332553

    Article  ADS  Google Scholar 

  239. B. Bogdanovich, V. I. Kaminsky, K. Senyukov, and A. V. Nesterovich, Proc. Part. Acc. Conf. (Vancouver, Canada, 1997), p. 3869. https://doi.org/10.1109/PAC.1997.753443

  240. J. M. Potter, AIP Conf. Proc. 1525, 178 (2013). https://doi.org/10.1063/1.4802315

    Article  ADS  Google Scholar 

  241. K. E. Nichols, B. E. Carlsten, and A. Malyzhenkov, Proc. LINAC’2016 (East Lansing, MI, USA, 2016), p. MOOP12.

  242. A. V. Smirnov, R. A. Agustsson, S. Boucher, M. Harrison, K. Junge, E. Savin, and A. Yu. Smirnov, J. Phys.: Conf. Ser. 941, 012085 (2017). https://doi.org/10.1088/1742-6596/941/1/012085

    Article  Google Scholar 

  243. A. V. Smirnov, Nucl. Instrum. Methods Phys. Res., Sect. A 868, 39 (2017). https://doi.org/10.1016/j.nima.2017.06.033

    Article  Google Scholar 

  244. S. K. Esin, L. V. Kravchuk, V. V. Paramonov, G. V. Romanov, and A. A. Stepanov, Nucl. Instrum. Methods Phys. Res., Sect. B 68 (1–4), 32 (1992). https://doi.org/10.1016/0168-583X(92)96045-Z

    Article  Google Scholar 

  245. A. V. Smirnov and E. A. Savin, IOSR-J. Appl. Phys. 10 (2), 65 (2018). https://doi.org/10.9790/4861-1002036577

    Article  Google Scholar 

  246. World Health Organization, Cancer. https://www.who.int/cancer/resources/keyfacts/en/.

  247. R. Atun, D. A. Jaffray, M. B. Barton, F. Bray, M. Baumann, B. Vikram, T.P. Hanna, F.M. Knaul, Y. Lievens, T. Y. M. Lui, M. Milosevic, B. O’Sullivan, D. L Rodin, E. Rosenblatt, J. Van Dyk, et al., Lancet Oncol. 16 (10), 1153 (2015). https://doi.org/10.1016/S1470-2045(15)00222-3

    Article  Google Scholar 

  248. S. Gianfaldoni, R. Gianfaldoni, U. Wollina, J. Lotti, G. Tchernev, and T. Lotti, Open Access Macedon. J. Med. Sci. 5 (4), 521 (2017). https://doi.org/10.3889/oamjms.2017.122

    Article  Google Scholar 

  249. R. Baskar, K. A. Lee, R. Yeo, and K. W. Yeoh, Int. J. Med. Sci. 9 (3), 193 (2012). https://doi.org/10.7150/ijms.3635

    Article  Google Scholar 

  250. A. M. Allen, T. Pawlicki, L. Dong, E. Fourkal, M. Buyyounouski, K. Cengel, J. Plastaras, M. K. Bucci, T. I. Yock, L. Bonilla, R. Price, E. E. Harris, and A.A. Konski, Radiother. Oncol. 103, 8 (2012). https://doi.org/10.1016/j.radonc.2012.02.001

    Article  Google Scholar 

  251. J. E. Turner, Atoms, Radiation, and Radiation Protection, 3rd ed. (Wiley–VCH, New York, 2007).

  252. M. Durante and H. Paganetti, Rep. Prog. Phys. 79, 096702 (2016). https://doi.org/10.1088/0034-4885/79/9/096702

    Article  ADS  Google Scholar 

  253. C. Huff, Hospitals Health Networks 81 (3), 62 (2007).

    Google Scholar 

  254. N. Maliwal, Radiotherapy: Technologies and Global Markets (BCC Res., 2015), HLC176B.

  255. E. F. Adebayo, O. A. Uthman, C. S. Wiysonge, E. A. Stern, K. T. Lamont, and J. E. Ataguba, BMC Health Serv. Res. 15 (1), 543 (2015). https://doi.org/10.1186/s12913-015-1179-3

    Article  Google Scholar 

  256. O. Balogun, D. Rodin, W. Ngwa, S. I. Grover, and J. Longo, Semin. Radiat. Oncol. 27 (2), 184 (2017). https://doi.org/10.1016/j.semradonc.2016.11.011

    Article  Google Scholar 

  257. S. Massoud, in Cancer Control (2013), pp. 85–94. http://cancercontrol.info/wp-content/uploads/2014/08/cc2013_83-96-Samiei-varian-tpage-incld-T-page_2012.pdf.

  258. P. Dong, P. Lee, D. Ruan, T. Long, E. Romeijn, Y. Yang, D. Low, P. Kupelian, and K. Sheng, Int. J. Radiat. Oncol. Biol. Phys. 85, 1360 (2013). https://doi.org/10.1016/j.ijrobp.2012.09.028

    Article  Google Scholar 

  259. UCLA Health, New 4π Radiation Therapy Provides Treatment Option for Patients with Recurrent Glioblastoma, 16v3-09:06-16 (UCLA Health, USA, 2016). https://www.uclahealth.org/workfiles/clinical_updates/radiation-oncology/16v3-09_4piRadiationTherapy_finalHR.pdf.

  260. J. C. Rwigema, D. Nguyen, D. E. Heron, A. M. Chen, P. Lee, P. Wang, J. A. Vargo, D. A Low, M. S. Huq, S. Tenn, M. L. Steinberg, P. Kupelian, and K. Sheng, Int. J. Radiat. Oncol. Biol. Phys. 91, 401 (2015). https://doi.org/10.1016/j.ijrobp.2014.09.043

    Article  Google Scholar 

  261. P. Dong, P. Lee, D. Ruan, T. Long, E. Romeijn, D. A. Low, P. Kupelian, J. Abraham, Y. Yang, and K. Sheng, Int. J. Radiat. Oncol. Biol. Phys. 86, 407 (2013). https://doi.org/10.1016/j.ijrobp.2013.02.002

    Article  Google Scholar 

  262. https://blog.peekmed.com/c-arm-x-ray-machines/.

  263. https://cyberknife.com/.

  264. V. Y. Yu, A. Tran, D. Nguyen, M. Cao, D. Ruan, D. A. Low, and K. Sheng, Med. Phys. 42 (11), 6457 (2015). https://doi.org/10.1118/1.4932631

    Article  Google Scholar 

  265. K. Woods, M. Harrison, S. Boucher, J. McNevin, S. Kutsaev, L. Faillace, and K. Sheng, Med. Phys. 43 (6), 3895 (2016). https://doi.org/10.1118/1.4958253

    Article  Google Scholar 

  266. N. Linthout, D. Verellen, K. Tournel, T. Reynders, M. Duchateau, and G. Storme, Radiother. Oncol. 83, 168 (2007). https://doi.org/10.1016/j.radonc.2007.04.015

    Article  Google Scholar 

  267. P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang, J. M. Kapatoes, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. B. Van Herk, S. S. Vedam, J. W. Wong, and E. Yorke, Med. Phys. 33 (10), 3874 (2006). https://doi.org/10.1118/1.2349696

    Article  Google Scholar 

  268. V. Favaudon, L. Caplier, V. Monceau, F. Pouzoulet, M. Sayarath, C. Fouillade, M.-F. Poupon, I. Brito, P. Hupé,  J. Bourhis,  J. Hall, J.-J. Fontaine, and M.-C. Vozenin, Sci. Transl. Med. 6 (245), 245 (2014). https://doi.org/10.1126/scitranslmed.3008973

    Article  Google Scholar 

  269. https://www.varian.com.

  270. P. Symonds and G. D. D. Jones, Clin. Oncol. 31 (7), 405 (2019). https://doi.org/10.1016/j.clon.2019.05.011

    Article  Google Scholar 

  271. A. Patriarca, C. Fouillade, M. Auger, F. Martin, F. Pouzoulet, C. Nauraye, S. Heinrich, V. Favaudon, S. Meyroneinc, R. Dendale, A. Mazal, P. Poortmans, P. Verrelle, and L. De Marzi, Int. J. Radiat. Oncol. Biol. Phys. 102 (3), 619 (2018). https://doi.org/10.1016/j.ijrobp.2018.06.403

    Article  Google Scholar 

  272. Appl. Radiat. Oncol. “First Flash Irradiation Delivered in an IBA Gantry Treatment Room” (2019). https://appliedradiationoncology.com/articles/first-flashirradiation-delivered-in-an-iba-gantry-treatment-room.

  273. M. Krämer, E. Scifoni, C. Schuy, M. Rovituso, W. Tinganelli, A. Maier, R. Kaderka, W. Kraft-Weyrather, S. Brons, T. Tessonnier, K. Parodi, and M. Durante, Med. Phys. 43 (4), 1995 (2016). https://doi.org/10.1118/1.4944593

    Article  Google Scholar 

  274. O. Sokol, E. Scifoni, W. Tinganelli, W. Kraft-Weyrather, J. Wiedemann, A. Maier, D. Boscolo, T. Friedrich, S. Brons, M. Durante, and M. Krämer, Phys. Med. Biol. 62 (19), 7798 (2017). https://doi.org/10.1088/1361-6560/aa88a0

    Article  Google Scholar 

  275. M. Jermann, Hadron Therapy Patient Statistics: Particle Therapy Cooperative Group (2013). http://www.ptcog.ch/archive/patient_statistics/PatientstatisticsupdateMar2013. pdf.

  276. T. Kamada, H. Tsujii, H. Tsuji, T. Yanagi, J. Mizoe, T. Miyamoto, H. Kato, S. Yamada, S. Morita, K. Yoshikawa, S. Kandatsu, and A. Tateishi, J. Clin. Oncol. 20 (22), 4466 (2020). https://doi.org/10.1200/JCO.2002.10.050

    Article  Google Scholar 

  277. I. Serizawa, K. Kagei, T. Kamada, R. Imai, S. Sugahara, T. Okada, H. Tsuji, H. Ito, and H. Tsujii, Int. J. Radiat. Oncol. Biol. Phys. 75 (4), 1105 (2009). https://doi.org/10.1016/j.ijrobp.2008.12.019

    Article  Google Scholar 

  278. S. Sugahara, T. Kamada, R. Imai, H. Tsuji, N. Kameda, T. Okada, H. Tsujii, and S. Tatezaki, Radiother. Oncol. 105 (2), 226 (2012). https://doi.org/10.1016/j.radonc.2012.09.010

    Article  Google Scholar 

  279. O. Mohamad, B. J. Sishc, J. Saha, A. Pompos, A. Rahimi, M. D. Story, A. J. Davis, and D. W. Nathan Kim, Cancers 9 (6), 66 (2017). https://doi.org/10.3390/cancers9060066

    Article  Google Scholar 

  280. C. Schlaff, A. Krauze, A. Belard, J. J. O’Connell, and K. A. Camphausen, Radiat. Oncol. 9, 88 (2014). https://doi.org/10.1186/1748-717X-9-88

    Article  Google Scholar 

  281. K. Peach, P. Wilson, and B. Jones, Br. J. Radiol. 84 (1), S004 (2011). https://doi.org/10.1259/bjr/16022594

    Article  Google Scholar 

  282. W. C. Hsi, M. F. Moyers, D. Nichiporov, V. Anferov, M. Wolanski, C. E. Allgower, J. B. Farr, A. E. Mascia, and A. N. Schreuder, Med. Phys. 36 (6), 2297 (2009). https://doi.org/10.1118/1.3132422

    Article  Google Scholar 

  283. G. Kraft, Nucl. Instrum. Methods Phys. Res., Sect. A 454, 1 (2000). https://doi.org/10.1016/S0168-9002(00)00802-0

    Article  Google Scholar 

  284. U. Amaldi, S. Braccini, and P. Puggioni, Rev. Accel. Sci. Technol. 2 (1), 111 (2009). https://doi.org/10.1142/S179362680900020X

    Article  Google Scholar 

  285. K. Yamanouchi, L. Roso, R. Li, D. Mathur, and D. Normand, Progress in Ultrafast Intense Laser Science XII (Springer, Switzerland, 2015).

    Book  Google Scholar 

  286. L. Arnaudon, P. Baudrenghien, C. Bertone, Y. Body, J. Broere, O. Brunner, M. Buzio, C. Carli, F. Caspers, J. P. Corso, J. Coupard, A. Dallocchio, N. Dos Santos, R. Garoby, F. Gerigk, et al., Proc. 2nd Int. Particle Accelerator Conf. (San Sebastian, Spain, 2011), p. TUOAA03.

  287. S. Benedetti, A. Grudiev, and A. Latina, Phys. Rev. Accel. Beams 20, 040101 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.040101

    Article  ADS  Google Scholar 

  288. C. De Martinis, D. Giove, U. Amaldi, P. Berra, K. Crandall, M. Mauri, M. Weiss, R. Zennaro, E. Rosso, B. Szeless, M. Vretenar, M. R. Masullo, V. Vaccaro, L. Calabretta, and A. Rovelli, Nucl. Instrum. Methods Phys. Res., Sect. A 681, 10 (2012). https://doi.org/10.1016/j.nima.2012.04.017

    Article  Google Scholar 

  289. A. M. Lombardi, V. A. Dimov, M. Garlasché, A. Grudiev, S. Mathot, E. Montesinos, S. Myers, M. Timmins, and M. Vretenar, Proc. IPAC’15 (Richmond, VA, USA, 2015), p. 2408. https://doi.org/10.18429/JACoW-IPAC2015-WEYB2

  290. M. Vretenar, A. Dallocchio, V. A. Dimov, M. Garlasché, A. Grudiev, A. M. Lombardi, S. Mathot, E. Montesinos, and M. Timmins, Proc. LINAC’2014 (Geneva, Switzerland, 2014), p. THPP040.

  291. S. Benedetti, A. Degiovanni, A. Grudiev, W. Wuensch, and U. Amaldi, Proc. LINAC’14 (Geneva, Switzerland, 2014), p. THPP061.

  292. A. Vnuchenko, D. Esperante Pereira, B. Gimeno Martinez, S. Benedetti, N. Catalan Lasheras, M. Garlasch, A. Grudiev, G. McMonagle, S. Pitman, I. Syratchev, M. Timmins, R. Wegner, B. Woolley, W. Wuensch, A. Faus Golfe, Phys. Rev. Accel. Beams 23, 084801 (2020). https://doi.org/10.1103/PhysRevAccelBeams.23.084801

    Article  ADS  Google Scholar 

  293. A. Degiovanni, CERN Yellow Report CERN-2017-004-SP (2018), pp. 151–164. https://doi.org/10.23730/CYRSP-2017-001.151

  294. U. Masood, T. E. Cowan, W. Enghardt, K. M. Hofmann, L. Karsch, F. Kroll, U. Schramm, J. J. Wilkens, and J. Pawelke, Phys. Med. Biol. 62 (13), 5531 (2017). https://doi.org/10.1088/1361-6560/aa7124

    Article  Google Scholar 

  295. S. Benedetti, Proc. 29th Linear Accelerator Conf. (Beijing, China, 2018), p. TH1P03. https://doi.org/10.18429/JACoW-LINAC2018-TH1P03

  296. S. Verdú-Andrés, U. Amaldi, and Á. Faus-Golfe, J. Radiat. Res. 54 (1), 1155 (2013). https://doi.org/10.1093/jrr/rrt053

    Article  Google Scholar 

  297. P. N. Ostroumov, A. Goel, B. Mustapha, A. Nassiri, A. S. Plastun, L. Faillace, S. V. Kutsaev, and E. A. Savin, Proc. NAPAC’16 (Chicago, IL, 2016), p. MOA4CO04.

  298. S. V. Kutsaev, R. Agustsson, S. Boucher, R. Fischer, A. Murokh, B. Mustapha, A. Nassiri, P. N. Ostroumov, A. Plastun, E. Savin, and A. Yu. Smirnov, Phys. Rev. Accel. Beams 20, 120401 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.120401

    Article  ADS  Google Scholar 

  299. D. Tronc, Nucl. Instrum. Methods Phys. Res., Sect. A 327 (2–3), 253 (1993). https://doi.org/10.1016/0168-9002(93)90689-F

    Article  Google Scholar 

  300. V. V. Paramonov, Phys. Part. Nucl. Lett. 13, 901 (2016). https://doi.org/10.1134/S1547477116070414

    Article  Google Scholar 

  301. A. S. Plastun, B. Mustapha, A. Nassiri, P. N. Ostroumov, L. Faillace, S. V. Kutsaev, and E. A. Savin, Proc. LINAC’2016 (East Lansing, MI, USA, 2016), p. THPLR042.

  302. B. M. Oborn, S. Dowdell, P. E. Metcalfe, S. Crozier, R. Mohan, and P. J. Keall, Med. Phys. 44 (8), 77 (2017). https://doi.org/10.1002/mp.12371

    Article  Google Scholar 

  303. M. Nishiuchi, H. Sakaki, T. Hori, P. R. Bolton, K. Ogura, A. Sagisaka, A. Yogo, M. Mori, S. Orimo, A. S. Pirozhkov, I. Daito, H. Kiriyama, H. Okada, S. Kanazawa, S. Kondo, et al., Proc. IPAC’10 (Kyoto, Japan, 2010), p. MOPEA013.

  304. U. Linz and J. Alonso, Phys. Rev. Accel. Beams 19, 124802 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.124802

    Article  ADS  Google Scholar 

  305. S. A. Gaillard, T. Kluge, K. A. Flippo, M. Bussmann, B. Gall, T. Lockard, M. Geissel, D.T. Offermann, M. Schollmeier, Y. Sentoku, and T. E. Cowan, Phys. Plasmas 18 (5), 056710 (2011). https://doi.org/10.1063/1.3575624

    Article  ADS  Google Scholar 

  306. E. d’Humiéres and L. Gremillet, Phys. Plasmas 12 (6), 062704 (2005). https://doi.org/10.1063/1.1927097

    Article  ADS  Google Scholar 

  307. B. M. Hegelich, D. Jung, B. J. Albright, M. Cheung, B. Dromey, D. C. Gautier, C. Hamilton, S. Letzring, R. Munchhausen, S. Palaniyappan, R. Shah, H.-C. Wu, L. Yin, and J. C. Fernández, arXiv:1310.8650 [physics.plasm-ph] (2013).

  308. S. M. Pfotenhauer, O. Jäckel, A. Sachtleben, J. Polz, W. Ziegler, H.-P. Schlenvoigt, K.-U. Amthor, M. C. Kaluza, K. W. D. Ledingham, R. Sauerbrey, P. Gibbon, A. P. L. Robinson, and H. Schwoerer, New J. Phys. 10, 033034 (2008). https://doi.org/10.1088/1367-2630/10/3/033034

    Article  ADS  Google Scholar 

  309. K. W. D. Ledingham, P. R. Bolton, N. Shikazono, and C.-M. Charlie, Appl. Sci. 4 (3), 402 (2014). https://doi.org/10.3390/app4030402

    Article  Google Scholar 

  310. https://www.varian.com/about-varian/newsroom/press-releases/cyclotron-varian-probeam-compact-proton-therapysystem.

  311. http://wwwelsa.physik.uni-bonn.de/accelerator_list.html.

  312. A. Gurevich, Supercond. Sci. Technol. 30, 034004 (2017). https://doi.org/10.1088/1361-6668/30/3/034004

    Article  ADS  Google Scholar 

  313. V. Ganni and P. Knudsen, AIP Conf. Proc. 1573, 1814 (2014). https://doi.org/10.1063/1.4860928

    Article  ADS  Google Scholar 

  314. R. Kephart, B. Chase, I. Gonin, A. Grassellino, S. Kazakov, T. Khabiboulline, S. Nagaitsev, R. Pasquinelli, S. Posen, O. Pronitchev, A. Romanenko, V. Yakovlev, S. Biedron, S. Milton, N. Sipahi, et al., Proc. SRF’2015 (Whistler, BC, Canada, 2015), p. FRBA03.

  315. T. K. Kroc and C. A. Cooper, Phys. Procedia 90, 92 (2017). https://doi.org/10.1016/j.phpro.2017.09.030

    Article  ADS  Google Scholar 

  316. T. D. Waite, C. N. Kurucz, W. J. Cooper, and D. Brown, Proc. Symp. on Radiation Technology for Conservation of the Environment (Zakopane, Poland, 1997), p. 187.

  317. A. Saini, N. Aggarwal, A. Sharma, and A. Yadav, Biotechnol. Res. Int. 2015, 1 (2015). https://doi.org/10.1155/2015/157139

  318. M. Ashley Day and F. Beland, US Patent US20190151816A1 (2019).

  319. A. A. Basfar, O. I. Fageeha, N. Kunnummal, S. Al-Ghamdi, A. G. Chmielewski, J. Licki, A. Pawelec, B. Tymiński, and Z. Zimek, Fuel 87 (8–9), 1446 (2008). https://doi.org/10.1016/j.fuel.2007.09.005

    Article  Google Scholar 

  320. R. D. Kephart, US Patent US9340931B2 (2016).

  321. D. S. Yurov, A. S. Alimov, B. S. Ishkhanov, and V. I. Shvedunov, Phys. Rev. Accel. Beams 20, 044702 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.044702

    Article  ADS  Google Scholar 

  322. S. B. Felch, M. I. Current, and M. C. Taylor, Proc. PAC’2013 (Pasadena, CA, USA, 2013), p. WEYB2.

  323. Y. B. Maximenko, D. A. Sergatskov, and V. P. Yakovlev, Proc. 15th Int. Conf. SRF’2011 (Chicago, IL, USA, 2011), p. THPO024. https://accelconf.web.cern.ch/SRF2011/SRF2011-AbstractBook.pdf

  324. M. Checchin, M. Martinello, A. Romanenko, A. Grassellino, D. A. Sergatskov, S. Posen, O. Melnychuk, and J. F. Zasadzinski, Phys. Rev. Appl. 5, 044019 (2016). https://doi.org/10.1103/PhysRevApplied.5.044019

    Article  ADS  Google Scholar 

  325. Ch. Wang, F. Y. Chang, L. H. Chang, M. H. Chang, J. Chen, L. J. Chen, M. C. Lin, F. T. Chung, Z. K. Liu, C. H. Lo, C. L. Tsai, T. C. Yu, and M. S. Yeh, Proc. 8th IPAC’17 (Copenhagen, Denmark, 2017), p. MOPVA098.

  326. G. Ciovati, J. Anderson, B. Coriton, J. Guo, F. Hannon, L. Holland, M. LeSher, F. Marhauser, J. Rathke, R. Rimmer, T. Schultheiss, and V. Vylet, Phys. Rev. Accel. Beams 21 (9), 091601 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.091601

    Article  ADS  Google Scholar 

  327. B. Aune, J. Anderson, B. Coriton, J. Guo, F. Hannon, L. Holland, M. LeSher, F. Marhauser, J. Rathke, R. Rimmer, T. Schultheiss, and V. Vylet, Phys. Rev. Accel. Beams 3 (9), 092001 (2000). https://doi.org/10.1103/PhysRevAccelBeams.21.091601

    Article  ADS  Google Scholar 

  328. W Singer, Supercond. Sci. Technol. 30 (3), 030301 (2017). https://doi.org/10.1088/1361-6668/30/3/033001

    Article  ADS  Google Scholar 

  329. A. Grassellino, A. Romanenko, D. Sergatskov, O. Melnychuk, Y. Trenikhina, A. Crawford, A. Rowe, M. Wong, T. Khabiboulline, and F. Barkov, Supercond. Sci. Technol. 26, 102001 (2013). https://doi.org/10.1088/0953-2048/26/10/102001

    Article  ADS  Google Scholar 

  330. D. Gonnella and M. Liepe, Proc. 27th LINAC’2014 (Geneva, Switzerland, 2014), p. MOPP017.

  331. A. Romanenko, A. Grassellino, A. C. Crawford, D. A. Sergatskov, and O. Melnychukm, Appl. Phys. Lett. 105, 234103 (2014). https://doi.org/10.1063/1.4903808

    Article  ADS  Google Scholar 

  332. S. Posen and M. Liepe, Phys. Rev. Accel. Beams 17, 112001 (2014). https://doi.org/10.1103/PhysRevSTAB.17.112001

    Article  ADS  Google Scholar 

  333. S. Holmes, P. Derwent, V. Lebedev, S. Mishra, D. Mitchell, and V. P. Yakovlev, Proc. 6th IPAC’2015 (Richmond, VA, USA, 2015), p. 3982. https://doi.org/10.18429/JACoW-IPAC2015-THPF116

  334. J. N. Galayda, Proc. IPAC’2014 (Dresden, Germany, 2014), p. TUIOA04.

  335. G. Eremeev, C. E. Reece, M. J. Kelley, U. Pudasaini, and J. R. Tuggle, Proc. SRF’2015 (Whistler, BC, Canada, 2015), p. TUBA05.

  336. P. Seidel, Applied Superconductivity: Handbook on Devices and Applications (Wiley–VCH, New York, 2015).

  337. S. Posen and M. Liepe, Proc. PAC’2013 (Pasadena, CA, USA, 2013), p. WEZBA1.

  338. R. E. Laxdal, Y. Ma, P. Harmer, D. Kishi, A. Koveshnikov, N. Muller, and A. Vrielink, AIP Conf. Proc. 1573, 1184 (2014). https://doi.org/10.1063/1.4860840

    Article  ADS  Google Scholar 

  339. https://www.cryomech.com/products/pt420/.

  340. S. Kutsaev, R. Agustsson, R. Berry, D. Chao, and Z.  Conway, J. Phys.: Conf. Ser. 1350 (1), 012184 (2019). https://doi.org/10.1088/1742-6596/1350/1/012184

    Article  Google Scholar 

  341. S. Kutsaev, R. Agustsson, R. Berry, Z. A. Conway, R. Fischer, M. P. Kelly, and K. Taletski, IEEE Trans. Appl. Supercond. 30 (8), 1 (2020). https://doi.org/10.1109/TASC.2020.3002764

    Article  Google Scholar 

  342. A. Nassiri, R. L. Kustom, T. Proslier, T. Tan, and X. X. Xi, Proc. SRF’2013 (Paris, France, 2013), p. TUP086.

  343. R. C. Dhuley, S. Posen, M. I. Geelhoed, O. Prokofiev, and J. C. T. Thangaraj, Supercond. Sci. Technol. 33 (6), 06LT01 (2020). https://doi.org/10.1088/1361-6668/ab82f0

    Article  Google Scholar 

  344. Y. Makhlin, G. Scöhn, and A. Shnirman, Nature 398, 305 (1999). https://doi.org/10.1038/18613

    Article  ADS  Google Scholar 

  345. B. Schumacher, Phys. Rev. A 51, 2738 (1995). https://doi.org/10.1103/PhysRevA.51.2738

    Article  MathSciNet  ADS  Google Scholar 

  346. M. Erhard, M. Krenn, and A. Zeilinger, Nat. Rev. Phys. 2, 365 (2020). https://doi.org/10.1038/s42254-020-0193-5

    Article  Google Scholar 

  347. B. D. Josephson, Phys. Lett. 1 (7), 251 (1962). https://doi.org/10.1016/0031-9163(62)91369-0

    Article  ADS  Google Scholar 

  348. N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Nature 536, 441 (2016). https://doi.org/10.1038/nature18949

    Article  ADS  Google Scholar 

  349. H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Phys. Rev. Lett. 107, 240501 (2011). https://doi.org/doi.org/10.1103/PhysRevLett.107.240501

    Article  ADS  Google Scholar 

  350. M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, Phys. Rev. B 94, 014506 (2016). https://doi.org/10.1103/PhysRevB.94.014506

    Article  ADS  Google Scholar 

  351. A. Romanenko and D. I. Schuster, Phys. Rev. Lett. 119, 264801 (2017). https://doi.org/10.1103/PhysRevLett.119.264801

    Article  ADS  Google Scholar 

  352. S. V. Kutsaev, K. Taletski, R. Agustsson, P. Carriere, A. N. Cleland, Z. A. Conway, É. Dumur, A. Moro, and A. Yu. Smirnov, EPJ Quantum Technol. 7, 7 (2020). https://doi.org/10.1140/epjqt/s40507-020-00082-8

    Article  Google Scholar 

  353. P. Frigola, R. Agustsson, L. Faillace, A. Murokh, G. Ciovati, W. Clemens, P. Dhakal, F. Marhauser, R. Rimmer, J. Spradlin, S. Williams, J. Mireles, and P. A. Morton, Proc. SRF’2015 (Whistler, BC, Canada, 2015), p. THPB042.

  354. A. Romanenko, R. Pilipenko, S. Zorzetti, D. Frolov, M. Awida, S. Belomestnykh, S. Posen, and A. Grassellino, Phys. Rev. Appl. 13, 034032 (2020). https://doi.org/10.1140/epjqt/s40507-020-00082-810.1103/PhysRevApplied.13.034032

    Article  ADS  Google Scholar 

  355. J. Palca, Physicists Go Small: Let’s Put a Particle Accelerator on a Chip (Wyoming Publ. Media, Wyoming, 2018). https://www.npr.org/sections/healthshots/2018/07/18/630101228/physicists-gosmall-lets-put-aparticle-accelerator-on-a-chip.

  356. Stanford Researchers Buil a Particle Accelerator That Fits on a Chip, Miniaturizing a Technology That Can Now Find New Apliations in Research and Medicine (Stanford News, 2020). https://news.stanford.edu/pressreleases/ 2020/01/02/accelerator-chiprch-fight-cancer.

  357. K. Wootton, R. Assmann, D. Black, R. Byer, B. Cowan, H.Deng, T.Egenolf, R. England, S. Fan, J. Harris, I. Hartl, P. Hommelhoff, T. Hughes, J. Illmer, R. Ishebeck, et al., Proc. IPAC’2017 (Copenhagen, Denmark, 2017), pp. WEYB1.

  358. D. Gavela, J. Calero, L. García-Tabaés, A. Guirao, D. Obradors-Campos, C. Oliverl, J. M. Pérez Morales, I. Podadera, and F. Toral, Proc. IPAC’2015 (Richmond, VA, USA, 2015), p. 1986.

  359. R.Varela, P. Abramian, J. Calero, P. Calvo, M.Domínguez, A. Estévez, L. García-Tabarés, D. Gavela, P. Gómez, A. Guirao, J. L. Gutiérrez, J. I. Lagares, D. López, L. Martínez, D. Obradors-Campos, et al., Proc. 5th Int. Beam Instrum. Conf. (IBIC’2016) (Barcelona, Spain, 2016), p. MOPG29. https://doi.org/10.18429/JACoW-IBIC2016-MOPG29

  360. A Smaller, Lighter Delivery System for Proton-Beam Radiotherapy (MIT News, 2015). https://phys.org/news/2015-06-smaller-lighter-delivery-proton-beam-radiotherapy.html.

  361. J. V. Minervini, L. Bromberg, P. Michael, A. Radovinsky, and D. Winklehner, Harvard Dataverse 1 (2019). https://doi.org/10.7910/DVN/RPON1M

  362. D. Satoh, M. Yoshida, and N. Hayashizak, Phys. Rev. Accel. Beams 20, 091302 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.091302

    Article  ADS  Google Scholar 

  363. A. V. Smirnov, R. Agustsson, M. Harrison, A. Murokh, A. Yu. Smirnov, S. Boucher, T. Campesee, K. J. Hoyt, E. A. Savin, and A. A. Zavadtsev, Proc. 9th Int. Particle Accelerator Conf. (IPAC’2018) (Vancouver, BC, Canada, 2018), p. TUZGBF5. https://doi.org/10.18429/JACoWIPAC2018-TUZGBF5

  364. https://www.uclahealth.org/radonc/4-pi-radiation-therapy.

  365. E. Schüler, L. Wang, B. W. Loo, and P. G. Maxim, Phys. Med. Biol. 64, 125014 (2019). https://doi.org/10.1088/1361-6560/ab246f

    Article  Google Scholar 

  366. P. G. Maxim, S. G. Tantawi, and B. W. Loo, Radiother. Oncol. 139, 28 (2019). https://doi.org/10.1016/j.radonc.2019.05.005

    Article  Google Scholar 

  367. A Miniature Accelerator to Treat Cancer (CERN News, 2015). https://phys.org/news/2015-07-miniature-cancer.html.

Download references

ACKNOWLEDGMENTS

The author is grateful to A. Murokh, A.Yu. Smirnov, and M. Ruelas (RadiaBeam, United States); Prof. N.P.  Sobenin (National Research Nuclear University MIFI, Moscow, Russia); A. Plastun (Michigan State University, United States); and Prof. V.I. Shvedunov (Skobel-tsyn Research Institute of Nuclear Physics, Moscow State University, Russia) for their help in preparing this review. The author used data obtained in collaboration with A. Arodzero, A.V. Smirnov, K. Taletskii, S. Boucher, R. Agustsson, and P. Frigola (RadiaBeam, United States); V. Dolgashev (Stanford National Accelerator Laboratory, United States); B. Mustapha, Z. Conway, M. Kelly, A. Zholents, J. Nolen, and J. Power (Argonne National Laboratory, United States); Prof. A. Cleland (University of Chicago, United States), Prof. P.N. Ostroumov (Michigan State University, United States), C. Johnsotne, A. Romanenko, and V.P. Yakovlev (Fermi National Accelerator Laboratory, United States); Profs. R. Lanza and R. Temkin (Massachusetts Technological University, United States); Prof. M. A. Gusarova (National Research Nuclear University MIFI, Moscow, Russia)l and others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kutsaev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutsaev, S.V. Advanced Technologies for Applied Particle Accelerators and Examples of Their Use (Review). Tech. Phys. 66, 161–195 (2021). https://doi.org/10.1134/S1063784221020158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221020158

Navigation