Skip to main content
Log in

Some remarks on Kida’s formula when \(\mu \ne 0\)

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Kida’s formula in classical Iwasawa theory relates the Iwasawa \(\lambda \)-invariants of p-extensions of number fields. Analogue of this formula was subsequently established for the Iwasawa \(\lambda \)-invariants of Selmer groups under an appropriate \(\mu =0\) assumption. In this paper, we give a conceptual (but conjectural) explanation that such a formula should also hold when \(\mu \ne 0\). The conjectural component comes from the so-called \({\mathfrak {M}}_H(G)\)-conjecture in noncommutative Iwasawa theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ardakov, K., Brown, K.A.: Primeness, semiprimeness and localisation in Iwasawa algebras. Trans. Am. Math. Soc. 359(4), 1499–1515 (2007)

    Article  MathSciNet  Google Scholar 

  2. Burns, D., Venjakob, O.: On descent theory and main conjectures in non-commutative Iwasawa theory. J. Inst. Math. Jussieu 10(1), 59–118 (2011)

    Article  MathSciNet  Google Scholar 

  3. Coates, J., Greenberg, R.: Kummer theory for abelian varieties over local fields. Invent. Math. 124, 129–174 (1996)

    Article  MathSciNet  Google Scholar 

  4. Coates, J., Howson, S.: Euler characteristics and elliptic curves II. J. Math. Soc. Jpn. 53(1), 175–235 (2001)

    Article  MathSciNet  Google Scholar 

  5. Coates, J., Sujatha, R.: On the \(\mathfrak{M}_H(G)\)-conjecture, in Non-abelian Fundamental Groups and Iwasawa Theory. In: Coates, J., Kim, M., Pop, F., Saidi, M., Schneider, P. (eds.). London Math. Soc. Lecture Note Ser. 393, Cambridge Univ. Press, 2012, pp. 132–161

  6. Coates, J., Fukaya, T., Kato, K., Sujatha, R., Venjakob, O.: The \(GL_2\) main conjecture for elliptic curves without complex multiplication. Publ. Math. IHES 101, 163–208 (2005)

    Article  Google Scholar 

  7. Coates, J., Dokchitser, T., Liang, Z., Stein, W., Sujatha, R.: Non-commutative Iwasawa theory for modular forms. Proc. Lond. Math. Soc. 107, 481–516 (2013)

    Article  MathSciNet  Google Scholar 

  8. Dokchitser, T., Dokchitser, V.: Growth of III in towers for isogenous curves. Compos. Math 151, 191–205 (2015)

  9. Drinen, M.: Iwasawa \(\mu \)-invariants of elliptic curves and their symmetric powers. J. Numb. Theory 102, 191–213 (2003)

    Article  MathSciNet  Google Scholar 

  10. Ferrero, B., Washington, L.C.: The Iwasawa invariant \(\mu _p\) vanishes for abelian number fields. Ann. Math. 109(2), 377–395 (1979)

    Article  MathSciNet  Google Scholar 

  11. Goodearl, K.R., Warfield, R.B.: An introduction to non-commutative Noetherian rings. In: London Math. Soc. Stud. Texts 61. Cambridge University Press, Cambridge (2004)

  12. Greenberg, R.: Iwasawa theory for \(p\)-adic representation. In: Coates, J., Greenberg, R., Mazur, B., Satake, I. (eds.). Algebraic Number Theory—in honor of K. Iwasawa. Adv. Std. in Pure Math. 17, pp. 97–137 (1989)

  13. Greenberg, R.: Iwasawa theory for elliptic curves. ln: Viola, C. (ed.). Arithmetic theory of elliptic curves (Cetraro, 1997), Lecture Notes in Math., Vol. 1716 (Springer, Berlin, 1999), pp. 51–144

  14. Greenberg, R.: Iwasawa theory, projective modules and modular representations. Mem. Am. Math. Soc. 992 (2011)

  15. Hachimori, Y., Matsuno, K.: An analogue of Kida’s formula for the Selmer groups of elliptic curves. J. Algebr. Geom. 8, 581–601 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Hachimori, Y., Venjakob, O.: Completely faithful Selmer groups over Kummer extensions, Doc. Math.: 443–478. Kazuya Kato’s fiftieth birthday, Extra Volume (2003)

  17. Hachimori, Y., Sharifi, R.: On the failure of pseudo-nullity of Iwasawa modules. J. Algebr. Geom. 14, 567–591 (2005)

    Article  MathSciNet  Google Scholar 

  18. Howson, S.: Euler characteristics as invariants of Iwasawa modules. Proc. Lond. Math. Soc. 85(3), 634–658 (2002)

    Article  MathSciNet  Google Scholar 

  19. Imai, H.: A remark on the rational points of abelian varieties with values in cyclotomic \(\mathbb{Z}\)-extensions. Proc. Jpn. Acad. 51, 12–16 (1975)

    MathSciNet  MATH  Google Scholar 

  20. Iwasawa, K.: Riemann-Hurwitz formula and \(p\)-adic Galois representations for number fields. Tohoku Math. J. 33, 263–288 (1981)

    Article  MathSciNet  Google Scholar 

  21. Kida, Y.: \(l\)-extensions of CM-fields and cyclotomic invariants. J. Numb. Theory 12, 519–528 (1980)

    Article  MathSciNet  Google Scholar 

  22. Lam, T.Y.: Lectures on Modules and Rings, Grad. Texts in Math. 189. Springer, New Yorl (1999)

  23. Lim, M.F., Sharifi, R.: Nekovár̆ duality over \(p\)-adic Lie extensions of global fields. Doc. Math. 18, 621–678 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Lim, M.F.: A remark on the \(\mathfrak{M}_H(G)\)-conjecture and Akashi series. Int. J. Numb. Theory 11(1), 269–297 (2015)

    Article  Google Scholar 

  25. Lim, M.F.: Notes on the fine Selmer groups. Asian J. Math. 21(2), 337–362 (2017)

    Article  MathSciNet  Google Scholar 

  26. Lim, M.F.: Comparing the \(\pi \)-primary submodules of the dual Selmer groups. Asian J. Math. 21(6), 1153–1182 (2017)

    Article  MathSciNet  Google Scholar 

  27. Mazur, B., Wiles, A.: On \(p\)-adic analytic families of Galois representations. Compos. Math. 59, 231–264 (1986)

    MathSciNet  MATH  Google Scholar 

  28. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields, 2nd edn., Grundlehren Math. Wiss. 323 (Springer-Verlag, Berlin, 2008)

  29. Neumann, A.: Completed group algebras without zero divisors. Arch. Math. 51(6), 496–499 (1988)

    Article  MathSciNet  Google Scholar 

  30. Pollack, R., Weston, T.: Kida’s formula and congruences. Doc. Math. Extra Vol. 615–630 (2006)

  31. Ribet, K.: Torsion points of abelian varieties in cyclotomic extensions. Enseign. Math. 27, 315–319 (1981)

    Google Scholar 

  32. Sujatha, R.: Iwasawa theory and modular forms. Pure Appl. Math. Q. 2(2), 519–538 (2006)

    Article  MathSciNet  Google Scholar 

  33. Venjakob, O.: On the structure theory of the Iwasawa algebra of a \(p\)-adic Lie group. J. Eur. Math. Soc. 4(3), 271–311 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author like to thank John Coates for his interest and comments on the paper. He would also like to thank the anonymous referee for many useful comments and suggestions on the article. Some part of the research of this article was conducted when the author was visiting the National University of Singapore and the National Center for Theoretical Sciences in Taiwan, and he would like to acknowledge the hospitality and conducive working conditions provided by these institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Fai Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author’s research is supported by the National Natural Science Foundation of China under Grant No. 11550110172 and Grant No. 11771164.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, M.F. Some remarks on Kida’s formula when \(\mu \ne 0\). Ramanujan J 55, 1127–1144 (2021). https://doi.org/10.1007/s11139-021-00393-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-021-00393-z

Keywords

Mathematics Subject Classification

Navigation