Skip to main content
Log in

Mid-term Periodicities in Solar Radio Emission Corresponding to Sunspot Number During Solar Cycle 23

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present a systematic time-series analysis of solar radio emission in nine different frequencies to compare with that of daily sunspot number (SSN) during Solar Cycle 23 (1996–2009). Owing to the contribution from quiet-sun emission, the total solar fluxes in microwaves do not decrease as significantly as the sunspot number does during 2006 to 2009. Lomb–Scargle (LS) and wavelet analysis techniques are employed to infer the various periodicities present in the time-series data. False alarm probability (FAP) levels are estimated by the use of background mean power spectrum in the global wavelet spectrum. The LS periodogram contains resolved period peaks, some of which are below FAP levels, for example a well-known rotational period. These peaks are assessed with global significance levels of the wavelet analysis. In all the data sets, the period for solar rotational modulation (26–31 days) is present. The periodogram for the SSN presents Riéger type periods (130–180 days), mid-term periods (300–400 days) and long-term periods (430–850 days). These periods in north and south are not similar, especially long term periods are missing in SSN data of the southern hemisphere. Corresponding to the SSN periodicities, Riéger and near Riéger type of oscillations (130–180 days), quasi-biennial periodicities in the range of 1.2 to 3 years were detected in the time-series data of radio frequencies. Several of these detected periods fall in the range of the periods that are suggested to be connected with magneto-Rossby wave spherical harmonics. Our analysis found reduced power levels in the LS periodograms of low frequencies because of the fact that these low frequency emissions originate higher up in the corona with diminishing contrast to small scale structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. https://www.ngdc.noaa.gov/stp/space-weather/online-publications/stp_sib/.

  2. See for more details ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA_RADIO.

References

  • Aroori, M., Yellaiah, G., Reddy, K.C.: 2018, Variation of quiet Sun radiation during Solar Cycles 23 and 24. In: Foullon, C., Malandraki, O.E. (eds.) Space Weather of the Heliosphere: Processes and Forecasts, IAU Symposium 335, 11. DOI. ADS.

    Chapter  Google Scholar 

  • Ataç, T., Özgüç, A., Rybak, J.: 2006, Periodicities in irradiance and in other solar activity indices during Cycle 23. Solar Phys. 237, 433. DOI. ADS.

    Article  ADS  Google Scholar 

  • Auchère, F., Froment, C., Bocchialini, K., Buchlin, E., Solomon, J.: 2016, On the Fourier and wavelet analysis of coronal time series. Astrophys. J. 825(2), 110. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bai, T.: 2003, Periodicities in solar flare occurrence: analysis of Cycles 19-23. Astrophys. J. 591, 406. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bai, T., Sturrock, P.A.: 1991, The 154-day and related periodicities of solar activity as subharmonics of a fundamental period. Nature 350, 141. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bai, T., Sturrock, P.A.: 1993, Evidence for a fundamental period of the sun and its relation to the 154 day complex of periodicities. Astrophys. J. 409, 476. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ballester, J.L., Oliver, R., Baudin, F.: 1999, Discovery of the near 158 day periodicity in group sunspot numbers during the eighteenth century. Astrophys. J. Lett. 522(2), L153. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ballester, J.L., Oliver, R., Carbonell, M.: 2002, The near 160 day periodicity in the photospheric magnetic flux. Astrophys. J. 566(1), 505. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ballester, J.L., Oliver, R., Carbonell, M.: 2004, Return of the near 160 day periodicity in the photospheric magnetic flux during solar Cycle 23. Astrophys. J. Lett. 615(2), L173. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ballester, J.L., Oliver, R., Carbonell, M.: 2005, The periodic behaviour of the North-South asymmetry of sunspot areas revisited. Astron. Astrophys. 431, L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bazilevskaya, G., Broomhall, A.-M., Elsworth, Y., Nakariakov, V.M.: 2014, A combined analysis of the observational aspects of the quasi-biennial oscillation in solar magnetic activity. Space Sci. Rev. 186(1-4), 359. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bogart, R.S., Bai, T.: 1985, A 157-day periodioity of flare occurrence observed in microwave data. In: Bulletin of the American Astronomical Society, Bull. Am. Astron. Soc. 17, 644. ADS.

    Google Scholar 

  • Bouwer, S.D.: 1992, Periodicities of solar irradiance and solar activity indices - Part two. Solar Phys. 142(2), 365. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carbonell, M., Oliver, R., Ballester, J.L.: 1993, On the asymmetry of solar activity. Astron. Astrophys. 274, 497. ADS.

    ADS  Google Scholar 

  • Chowdhury, P., Dwivedi, B.N.: 2011, Periodicities of sunspot number and coronal index time series during solar Cycle 23. Solar Phys. 270, 365. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chowdhury, P., Khan, M., Ray, P.C.: 2009, Intermediate-term periodicities in sunspot areas during solar Cycles 22 and 23. Mon. Not. Roy. Astron. Soc. 392, 1159. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chowdhury, P., Khan, M., Ray, P.C.: 2010, Evaluation of the short and intermediate term periodicities in cosmic ray intensity during solar Cycle 23. Planet. Space Sci. 58(7-8), 1045. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chowdhury, P., Ray, P.C.: 2006, Periodicities of solar electron flare occurrence: analysis of Cycles 21-23. Mon. Not. Roy. Astron. Soc. 373, 1577. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chowdhury, P., Choudhary, D.P., Gosain, S., Moon, Y.-J.: 2015, Short-term periodicities in interplanetary, geomagnetic and solar phenomena during solar Cycle 24. Astrophys. Space Sci. 356(1), 7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chowdhury, P., Kilcik, A., Yurchyshyn, V., Obridko, V.N., Rozelot, J.P.: 2019, Analysis of the hemispheric sunspot number time series for the solar Cycles 18 to 24. Solar Phys. 294(10), 142. DOI. ADS.

    Article  ADS  Google Scholar 

  • Das, T.K., Chatterjee, T.N.: 1996, Periodicity in the basal component of solar radio emission. Mon. Not. Roy. Astron. Soc. 278, 6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Das, T.K., Nag, T.K.: 1998, Periodicity in the basal component of radio emission during maximum and minimum solar activity. Solar Phys. 179(2), 431. DOI. ADS.

    Article  ADS  Google Scholar 

  • Das, T.K., Nag, T.K.: 1999, Frequency dependence of the periodicity of the intensity of the non-magnetic component of solar radio emission. Mon. Not. Roy. Astron. Soc. 303, 221. DOI. ADS.

    Article  ADS  Google Scholar 

  • De, B.K., Chakraborty, M., Roy, R., Guha, A.: 2014, Midrange periodicity of basal component of solar radio flux during the extended solar minimum of Cycle 23-24. Bull. Astron. Soc. India 42(1), 1. ADS.

    ADS  Google Scholar 

  • Dikpati, M., McIntosh, S.W., Bothun, G., Cally, P.S., Ghosh, S.S., Gilman, P.A., Umurhan, O.M.: 2018, Role of interaction between magnetic Rossby waves and tachocline differential rotation in producing solar seasons. Astrophys. J. 853(2), 144. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gachechiladze, T., Zaqarashvili, T.V., Gurgenashvili, E., Ramishvili, G., Carbonell, M., Oliver, R., Ballester, J.L.: 2019, Magneto-Rossby waves in the solar tachocline and the annual variations in solar activity. Astrophys. J. 874(2), 162. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Ramishvili, G., Shergelashvili, B., Hanslmeier, A., Poedts, S.: 2016, Rieger-type periodicity during solar Cycles 14-24: estimation of dynamo magnetic field strength in the solar interior. Astrophys. J. 826(1), 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Dikpati, M., McIntosh, S.W.: 2017, North–South asymmetry in Rieger-type periodicity during solar Cycles 19–23. Astrophys. J. 845(2), 137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Horne, J.H., Baliunas, S.L.: 1986, A prescription for period analysis of unevenly sampled time series. Astrophys. J. 302, 757. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R.W., Larsen, R.M., Schou, J., Thompson, M.J., Toomre, J.: 2000, Dynamic variations at the base of the solar convection zone. Science 287(5462), 2456. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, B., Pant, P., Manoharan, P.K.: 2006, Periodicities in sunspot activity during solar cycle 23. Astron. Astrophys. 452(2), 647. DOI. ADS.

    Article  ADS  Google Scholar 

  • Katsavrias, C., Preka-Papadema, P., Moussas, X.: 2012, Wavelet analysis on solar wind parameters and geomagnetic indices. Solar Phys. 280(2), 623. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kilcik, A., Özgüç, A., Rozelot, J.P., Yeşilyurt, S.: 2008, Possible traces of solar activity effect on the surface air temperature of Turkey. J. Atmos. Solar-Terr. Phys. 70(13), 1669. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kilcik, A., Özgüç, A., Rozelot, J.P., Ataç, T.: 2010, Periodicities in solar flare index for Cycles 21 - 23 revisited. Solar Phys. 264(1), 255. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kilcik, A., Yurchyshyn, V., Donmez, B., Obridko, V.N., Ozguc, A., Rozelot, J.P.: 2018, Temporal and periodic variations of sunspot counts in flaring and non-flaring active regions. Solar Phys. 293, 63. DOI. ADS.

    Article  ADS  Google Scholar 

  • Knaack, R., Stenflo, J.O.: 2005, Spherical harmonic decomposition of solar magnetic fields. Astron. Astrophys. 438(1), 349. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Knaack, R., Stenflo, J.O., Berdyugina, S.V.: 2004, Periodic oscillations in the North-South asymmetry of the solar magnetic field. Astron. Astrophys. 418, L17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kundu, M.R.: 1965, Solar Radio Astronomy. ADS.

    Google Scholar 

  • Lara, A., Borgazzi, A., Mendes, O. Jr., Rosa, R.R., Domingues, M.O.: 2008, Short-period fluctuations in coronal mass ejection activity during solar Cycle 23. Solar Phys. 248(1), 155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lean, J.L., Brueckner, G.E.: 1989, Intermediate-term solar periodicities - 100-500 days. Astrophys. J. 337, 568. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lobzin, V.V., Cairns, I.H., Robinson, P.A.: 2012, Rieger-type periodicity in the occurrence of solar type III radio bursts. Astrophys. J. Lett. 754, L28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lomb, N.R.: 1976, Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447. DOI. ADS.

    Article  ADS  Google Scholar 

  • Löptien, B., Gizon, L., Birch, A.C., Schou, J., Proxauf, B., Duvall, T.L., Bogart, R.S., Christensen, U.R.: 2018, Global-scale equatorial Rossby waves as an essential component of solar internal dynamics. Nat. Astron. 2, 568. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lou, Y.-Q.: 2000, Rossby-type wave-induced periodicities in flare activities and sunspot areas or groups during solar maxima. Astrophys. J. 540(2), 1102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lou, Y.-Q., Wang, Y.-M., Fan, Z., Wang, S., Wang, J.X.: 2003, Periodicities in solar coronal mass ejections. Mon. Not. Roy. Astron. Soc. 345, 809. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Krista, L.D., Title, A.M., Hudson, H.S., Riley, P., Harder, J.W., Kopp, G., Snow, M., Woods, T.N., Kasper, J.C., Stevens, M.L., Ulrich, R.K.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun. 6, 6491. DOI. ADS.

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Cramer, W.J., Pichardo Marcano, M., Leamon, R.J.: 2017, The detection of Rossby-like waves on the Sun. Nat. Astron. 1, 0086. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mendoza, B., Velasco-Herrera, V.M.: 2011, On mid-term periodicities in sunspot groups and flare index. Solar Phys. 271(1-2), 169. DOI. ADS.

    Article  ADS  Google Scholar 

  • Oliver, R., Ballester, J.L.: 1994, The North-South asymmetry of sunspot areas during SOLAR-CYCLE-22. Solar Phys. 152(2), 481. DOI. ADS.

    Article  ADS  Google Scholar 

  • Oliver, R., Ballester, J.L.: 1995, Short-term periodicities in sunspot areas during solar Cycle 22. Solar Phys. 156(1), 145. DOI. ADS.

    Article  ADS  Google Scholar 

  • Oliver, R., Carbonell, M., Ballester, J.L.: 1992, Intermediate-term periodicities in solar activity. Solar Phys. 137, 141. DOI. ADS.

    Article  ADS  Google Scholar 

  • Oloketuyi, J., Liu, Y., Zhao, M.: 2019, The periodic and temporal behaviors of solar X-ray flares in solar Cycles 23 and 24. Astrophys. J. 874, 20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ozguc, A., Atac, T.: 1994, The 73-day periodicity of the flare index during the current solar Cycle 22. Solar Phys. 150, 339. DOI. ADS.

    Article  ADS  Google Scholar 

  • Özgüç, A., Ataç, T., Rybák, J.: 2002, Long-term periodicities in the flare index between the years 1966 - 2001. In: Wilson, A. (ed.) Solar Variability: From Core to Outer Frontiers, ESA Special Publication 2, 709. ADS.

    Google Scholar 

  • Pap, J., Tobiska, W.K., Bouwer, S.D.: 1990, Periodicities of solar irradiance and solar activity indices - Part one. Solar Phys. 129(1), 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pedlosky, J.: 1987, Geophysical Fluid Dynamics. DOI.

    Book  MATH  Google Scholar 

  • Prabhakaran Nayar, S.R., Radhika, V.N., Revathy, K., Ramadas, V.: 2002, Wavelet analysis of solar, solar wind and geomagnetic parameters. Solar Phys. 208(2), 359. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rieger, E., Share, G.H., Forrest, D.J., Kanbach, G., Reppin, C., Chupp, E.L.: 1984, A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rossby, C.G.: 1939, Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res. 2(1), 38.

    Article  Google Scholar 

  • Scargle, J.D.: 1982, Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sturrock, P.A., Bush, R., Gough, D.O., Scargle, J.D.: 2015, Indications of R-mode oscillations in SOHO/MDI solar radius measurements. Astrophys. J. 804(1), 47. DOI. ADS.

    Article  ADS  Google Scholar 

  • Temmer, M., Rybák, J., Bendík, P., Veronig, A., Vogler, F., Otruba, W., Pötzi, W., Hanslmeier, A.: 2006, Hemispheric sunspot numbers \(R_{n}\) and \(R_{s}\) from 1945-2004: catalogue and N-S asymmetry analysis for solar Cycles 18-23. Astron. Astrophys. 447(2), 735. DOI. ADS.

    Article  ADS  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. DOI. ADS.

    Article  ADS  Google Scholar 

  • VanderPlas, J.T.: 2018, Understanding the Lomb–Scargle periodogram. Astrophys. J. Suppl. 236(1), 16. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yin, Z.-Q., Han, Y.-B., Ma, L.-H., Le, G.-M., Han, Y.-G.: 2007, Short-term period variation of relative sunspot numbers. Chin. J. Astron. Astrophys. 7(6), 823. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: 2010a, Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. Astrophys. J. 709(2), 749. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: 2010b, Quasi-biennial oscillations in the solar tachocline caused by magnetic Rossby wave instabilities. Astrophys. J. Lett. 724(1), L95. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ziȩba, S., Masłowski, J., Michalec, A., Kułak, A.: 2001, Periodicities in data observed during the minimum and the rising phase of solar Cycle 23; years 1996-1999. Astron. Astrophys. 377, 297. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The data have been used in this paper accessed form NGDC. We thank the National Geophysical Data Centre (NGDC) Boulder, Department of Commerce, U.S for open data policy. We thank the referees for the helpful suggestions and comments on the estimation of significance levels and the physical interpretation of the obtained periods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahender Aroori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aroori, M., Vemareddy, P., Chowdhury, P. et al. Mid-term Periodicities in Solar Radio Emission Corresponding to Sunspot Number During Solar Cycle 23. Sol Phys 296, 43 (2021). https://doi.org/10.1007/s11207-021-01793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01793-6

Keywords

Navigation