Skip to main content
Log in

Suspended penetration wetting state of droplets on microstructured surfaces

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

When a water droplet on a micropillar-structured hydrophobic surface is submitted to gradually increased pressure, the Cassie-Baxter wetting state transforms into the Wenzel wetting state once the pressure exceeds a critical value. It has been assumed that the reverse transition (Wenzel-to-Cassie-Baxter wetting state) cannot happen spontaneously after the pressure has been removed. In this paper, we report a new wetting-state transition. When external pressure is exerted on a droplet in the Cassie-Baxter wetting state on textured surfaces with high micropillars to trigger the breakdown of this wetting state, the droplet penetrates the micropillars but does not touch the base of the surface to trigger the occurrence of the Wenzel wetting state. We have named this state the suspended penetration wetting state. Spontaneous recovery from the suspended penetration wetting state to the initial Cassie-Baxter wetting state is achieved when the pressure is removed. Based on the experimental results, we built models to establish the penetration depth that the suspended penetration wetting state could achieve and to understand the energy barrier that influences the equilibrium position of the liquid surface. These results deepen our understanding of wetting states on rough surfaces subjected to external disturbances and shed new light on the design of superhydrophobic materials with a robust wetting stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Neinhuis, and W. Barthlott, Ann. Bot. 79, 667 (1997).

    Article  Google Scholar 

  2. R. Blossey, Nat. Mater. 2, 301 (2003).

    Article  ADS  Google Scholar 

  3. R. Fürstner, W. Barthlott, C. Neinhuis, and P. Walzel, Langmuir 21, 956 (2005).

    Article  Google Scholar 

  4. Y. Lu, S. Sathasivam, J. Song, C. R. Crick, C. J. Carmalt, and I. P. Parkin, Science 347, 1132 (2015).

    Article  ADS  Google Scholar 

  5. X. Q. Feng, X. Gao, Z. Wu, L. Jiang, and Q. S. Zheng, Langmuir 23, 4892 (2007).

    Article  Google Scholar 

  6. D. Quéré, Annu. Rev. Mater. Res. 38, 71 (2008).

    Article  ADS  Google Scholar 

  7. C. H. Chen, Q. Cai, C. Tsai, C. L. Chen, G. Xiong, Y. Yu, and Z. Ren, Appl. Phys. Lett. 90, 173108 (2007).

    Article  ADS  Google Scholar 

  8. N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, and E. N. Wang, Nano Lett. 13, 179 (2013).

    Article  ADS  Google Scholar 

  9. N. Miljkovic, R. Enright, and E. N. Wang, ACS Nano 6, 1776 (2012).

    Article  Google Scholar 

  10. L. Cao, A. K. Jones, V. K. Sikka, J. Wu, and D. Gao, Langmuir 25, 12444 (2009).

    Article  Google Scholar 

  11. J. Lv, Y. Song, L. Jiang, and J. Wang, ACS Nano 8, 3152 (2014).

    Article  Google Scholar 

  12. M. J. Kreder, J. Alvarenga, P. Kim, and J. Aizenberg, Nat. Rev. Mater. 1, 15003 (2016).

    Article  ADS  Google Scholar 

  13. E. Bormashenko, R. Pogreb, G. Whyman, and M. Erlich, Langmuir 23, 12217 (2007).

    Article  Google Scholar 

  14. E. Bormashenko, R. Pogreb, G. Whyman, and M. Erlich, Langmuir 23, 6501 (2007).

    Article  Google Scholar 

  15. Y. C. Jung, and B. Bhushan, J. Microsc. 229, 127 (2008).

    Article  MathSciNet  Google Scholar 

  16. Y. C. Jung, and B. Bhushan, Langmuir 24, 6262 (2008).

    Article  Google Scholar 

  17. Q. S. Zheng, Y. Yu, and Z. H. Zhao, Langmuir 21, 12207 (2005).

    Article  Google Scholar 

  18. P. Papadopoulos, L. Mammen, X. Deng, D. Vollmer, and H. J. Butt, Proc. Natl. Acad. Sci. USA 110, 3254 (2013).

    Article  ADS  Google Scholar 

  19. A. Lafuma, and D. Quéré, Nat. Mater. 2, 457 (2003).

    Article  ADS  Google Scholar 

  20. T. N. Krupenkin, J. A. Taylor, E. N. Wang, P. Kolodner, M. Hodes, and T. R. Salamon, Langmuir 23, 9128 (2007).

    Article  Google Scholar 

  21. R. J. Vrancken, H. Kusumaatmaja, K. Hermans, A. M. Prenen, O. Pierre-Louis, C. W. M. Bastiaansen, and D. J. Broer, Langmuir 26, 3335 (2010).

    Article  Google Scholar 

  22. J. B. Boreyko, and C. H. Chen, Phys. Rev. Lett. 103, 174502 (2009).

    Article  ADS  Google Scholar 

  23. J. B. Boreyko, C. H. Baker, C. R. Poley, and C. H. Chen, Langmuir 27, 7502 (2011).

    Article  Google Scholar 

  24. J. B. Boreyko, and C. P. Collier, J. Phys. Chem. C 117, 18084 (2013).

    Article  Google Scholar 

  25. W. Lei, Z. H. Jia, J. C. He, T. M. Cai, and G. Wang, Appl. Phys. Lett. 104, 181601 (2014).

    Article  ADS  Google Scholar 

  26. C. Dorrer, and J. Rühe, Langmuir 23, 3820 (2007).

    Article  Google Scholar 

  27. T. Mouterde, G. Lehoucq, S. Xavier, A. Checco, C. T. Black, A. Rahman, T. Midavaine, C. Clanet, and D. Quéré, Nat. Mater. 16, 658 (2017).

    Article  ADS  Google Scholar 

  28. Y. S. Li, D. Quéré, C. J. Lv, and Q. S. Zheng, Proc. Natl. Acad. Sci. USA 114, 3387 (2017).

    Article  ADS  Google Scholar 

  29. Y. P. Zhao, and Q. Yuan, Nanoscale 7, 2561 (2015).

    Article  ADS  Google Scholar 

  30. Z. Wang, and Y. P. Zhao, Phys. Fluids 29, 067101 (2017).

    Article  ADS  Google Scholar 

  31. C. Ishino, K. Okumura, and D. Quéré, Europhys. Lett. 68, 419 (2004).

    Article  ADS  Google Scholar 

  32. G. Dupeux, P. Bourrianne, Q. Magdelaine, C. Clanet, and D. Quéré, Sci. Rep. 4, 5280 (2014).

    Article  ADS  Google Scholar 

  33. I. U. Vakarelski, N. A. Patankar, J. O. Marston, D. Y. C. Chan, and S. T. Thoroddsen, Nature 489, 274 (2012).

    Article  ADS  Google Scholar 

  34. R. Maboudian, W. R. Ashurst, and C. Carraro, Sens. Actuat. A-Phys. 82, 219 (2000).

    Article  Google Scholar 

  35. C. Lee, Y. Nam, H. Lastakowski, J. I. Hur, S. Shin, A. L. Biance, C. Pirat, C. J. “CJ” Kim, and C. Ybert, Soft Matter 11, 4592 (2015).

    Article  ADS  Google Scholar 

  36. N. Vrancken, S. Sergeant, G. Vereecke, G. Doumen, F. Holsteyns, H. Terryn, S. De Gendt, and X. M. Xu, Langmuir 33, 3601 (2017).

    Article  Google Scholar 

  37. P. Wang, J. Su, M. Shen, M. Ruths, and H. Sun, Langmuir 33, 638 (2017).

    Article  Google Scholar 

  38. C. Luo, and M. Xiang, Microfluid Nanofluid 17, 539 (2014).

    Article  Google Scholar 

  39. Q. Yuan, and Y. P. Zhao, J. Fluid Mech. 716, 171 (2013).

    Article  ADS  Google Scholar 

  40. E. Chen, Q. Yuan, and Y.-P. Zhao, Soft Matter 14, 6198 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to CunJing Lv or QuanShui Zheng.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11632009, and 11872227).

The supporting information is available online at phys.scichina.com and http://link.springer.com/journal/11433. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, J., Shi, S., Ma, C. et al. Suspended penetration wetting state of droplets on microstructured surfaces. Sci. China Phys. Mech. Astron. 64, 244711 (2021). https://doi.org/10.1007/s11433-020-1654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1654-4

Keywords

Navigation