Skip to main content
Log in

Quantum-Chemical and Theoretical Kinetics Studies on the Gas-Phase Unimolecular Decomposition Reaction of Sulfur Hexafluoride, SF6

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The aim of this study is to calculate the unimolecular rate coefficients for the unimolecular decomposition reaction of the industrially important molecule, SF6. The energies of stationary-points involved in the title reaction are calculated by the combination W1 method. Two main reaction paths are considered: SF6 → SF5 + F (R1) and SF6 → SF4 + F2 (R2). Having information on energies and molecular properties of reactants and transition-states, RRKM statistical rate theory is used to compute the rate coefficients as a function of temperature and pressure. For the bond dissociation process R1, special version of RRKM theory, i. e., Variable reaction coordinate-transition state theory (VRC-TST) is employed. Although the reaction R1 is the dominant process over a wide range of pressure and temperature, but the reaction R2 could be significant at high temperatures. The following Arrhenius expressions are obtained for high-pressure limiting rate constants of reaction paths R1 and R2:

k∞,1 = 5.71 × 1016 s−1 exp (−429.8 kJ mol−1 /RT)

k∞,2 = 2.14 × 1016 s−1 exp (−590.6 kJ mol−1 /RT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Christophorou LG, Olthoff JK, van Brunt RJ (1997) IEEE Electr Insul Mag 13:20–24

    Article  Google Scholar 

  2. Chu FY (1986) IEEE Trans Electr Insul 21:693–725

    Article  Google Scholar 

  3. Niemeyer L, Chu FY (1992) IEEE Trans Electr Insul 27:184–187

    Article  CAS  Google Scholar 

  4. Tang J, Liu F, Zhang X, Meng Q, Zhou J (2012) IEEE Trans Dielectr Electr Insul 19:29–36

    Article  CAS  Google Scholar 

  5. Tang J, Zeng F, Pan J, Zhang X, Yao Q, He J, Hou X (2013) IEEE Trans Dielectr Electr Insul 20:864–875

    Article  CAS  Google Scholar 

  6. Zeng F, Tang J, Fan Q, Pan J, Zhang X, Yao Q, He J (2014) IEEE Trans Dielectr Electr Insul 21:995–1004

    Article  CAS  Google Scholar 

  7. Bott JF, Jacobs TA (1969) J Chem Phys 50:3850–3855

    Article  CAS  Google Scholar 

  8. Emanuel G (1969) Am Inst Aeronaut Astronaut 7:1208–1209

    Article  CAS  Google Scholar 

  9. Wray KL, Feldman EV (1973) Int Combust Proc 14:229–238

    Article  Google Scholar 

  10. Lyman JL (1977) J Chem Phys 67:1868–1876

    Article  CAS  Google Scholar 

  11. Diebold GJ, Engelke F, Lubman DM, Whitehead JC, Zare RN (1977) J Chem Phys 67:5407–5409

    Article  CAS  Google Scholar 

  12. Shultz MJ, Yablonovitch E (1978) J Chem Phys 68:3007–3013

    Article  CAS  Google Scholar 

  13. Schulz PA, Sudbo AS, Grant ER, Shen YR, Lee YT (1980) J Chem Phys 72:4985–4995

    Article  CAS  Google Scholar 

  14. Fu Y, Wang X, Wang X, Yang A, Rong M (2019) Plasma Chem Plasma Process 40:449–467

    Article  Google Scholar 

  15. Zhong L, Ji S, Wang F, Sun Q, Chen S, Liu J (2019) J Fluor Chem 220:61–68

    Article  CAS  Google Scholar 

  16. Fu Y, Yang A, Wang X, Murphy A, Li X, Liu D (2016) J Phys D Appl Phys 49(38):385203

    Article  Google Scholar 

  17. Martin JML, de Oliveira G (1999) J Chem Phys 111:1843–1856

    Article  CAS  Google Scholar 

  18. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  19. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloiono J, Zheng G, Sonneberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T Jr, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand K, Raghavachari J, Rendell A, Burant CJ, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin LR, Morokuma K, Zakrzewski VGG, Voth A, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 A1 Revision. Gaussian Inc, Wallingford, CT

    Google Scholar 

  21. Holbrook KA, Pilling MJ, Robertson SJ (1996) Unimlecular reactions. John Wiley & Sons Inc, Chichester, U K

    Google Scholar 

  22. Gilbert RG, Smith SC (1990) Theory of unimolecualr and recombination reactions. Blackwell Scientific, Oxford

    Google Scholar 

  23. Troe J (1977) J Chem Phys 66:4745–4757

    Article  CAS  Google Scholar 

  24. Seakins PW, Robertson SH, Pilling MJ, Slagle IR, Gmurczyk GW, Bencsura A, Gutman D, Tsang W (1993) J Phys Chem 97:4450–4458

    Article  CAS  Google Scholar 

  25. Fernández-Ramos A, Ellingson BA, Meana-Pañeda R, Marques JMC, Truhlar DG (2007) Theor Chem Account 118:813–826

    Article  Google Scholar 

  26. Klippenstein SJ (1990) Chem Phys Lett 170:71–77

    Article  CAS  Google Scholar 

  27. Klippenstein SJ (1994) J Phys Chem 98:11459–11464

    Article  CAS  Google Scholar 

  28. Wardlaw DM, Marcus RA (1986) J Phys Chem 90:5383–5393

    Article  CAS  Google Scholar 

  29. Wardlaw DM, Marcus RA (1984) Chem Phys Lett 110:230–234

    Article  CAS  Google Scholar 

  30. Klippenstein SJ, Khundkar LR, Zewail AH, Marcus RA (1988) J Phys Chem 89:4761–4770

    Article  CAS  Google Scholar 

  31. Klippenstein SJ (1991) J Phys Chem 94:6469–6482

    Article  CAS  Google Scholar 

  32. Klippenstien SJ, Wagner AF, Dunbar RC, Wardlaw DM, Robertson SH (1999) VARIFLEX VERSION 100.

  33. Benson SW (1978) Chem Rev 78:23–35

    Article  CAS  Google Scholar 

  34. Chase MW Jr, NIST-JANAF, (1998) Themochemical Tables. Fourth Edition, J Phys Chem Ref Data, Monograph 9:1–1951

    Google Scholar 

Download references

Acknowledgements

We are grateful to Shahid Bahonar University of Kerman Research Council for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Saheb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saheb, V., Nazari, A. Quantum-Chemical and Theoretical Kinetics Studies on the Gas-Phase Unimolecular Decomposition Reaction of Sulfur Hexafluoride, SF6. Plasma Chem Plasma Process 41, 745–756 (2021). https://doi.org/10.1007/s11090-021-10157-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-021-10157-8

Keywords

Navigation