Skip to main content
Log in

Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In solving the split variational inequality problems, very few methods have been considered in the literature and most of these few methods require the underlying operators to be co-coercive. This restrictive co-coercive assumption has been dispensed with in some methods, many of which require a product space formulation of the problem. However, it has been discovered that this product space formulation may cause some potential difficulties during implementation and its approach may not fully exploit the attractive splitting structure of the split variational inequality problem. In this paper, we present two new methods with inertial steps for solving the split variational inequality problems in real Hilbert spaces without any product space formulation. We prove that the sequence generated by these methods converges strongly to a minimum-norm solution of the problem when the operators are pseudomonotone and Lipschitz continuous. Also, we provide several numerical experiments of the proposed methods in comparison with other related methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems Optimization. https://doi.org/10.1080/02331934.2020.1723586 (2020)

  2. Alakoya, T.O., Taiwo, A., Mewomo, O.T., Cho, Y.J.: An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings. Ann. Univ. Ferrara Sez. VII Sci. Mat. https://doi.org/10.1007/s11565-020-00354-2

  3. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14(3), 773–782 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9(1-2), 3–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aremu, K.O., Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: Multi-step Iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. J. Ind. Manag. Optim. https://doi.org/10.3934/jimo.2020063 (2020)

  6. Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward-backward algorithm for convex minimization. SIAM J. Optim. 24(1), 232–256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bot, R.I., Csetnek, E.R., Vuong, P.T.: The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces. arXiv:1808.08084

  9. Byrne, C.: A unified treatment for some iterative algorithms in signal processing and image reconstruction. Inv. Probl. 20, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ceng, L.C., Ansari, Q.H., Yao, J.C.: Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem. Nonlinear Anal. 75, 2116–2125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  12. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Censor, Y., Gibali, A., Reich, S.: The split variational inequality problem. The Technion-Israel Institute of Technology, Haifa 59, 301–323 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cholamjiak, P., Shehu, Y.: Inertial forward-backward splitting method in Banach spaces with application to compressed sensing. Appl. Math. 64, 409–435 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cholamjiak, P., Thong, D.V., Cho, Y.J.: A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems. Acta Appl. Math. https://doi.org/10.1007/s10440-019-00297-7 (2019)

  18. Cottle, R.W., Yao, J.C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281–295 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, Q., Cho, Y., Zhong, L., Rassias, T. M.: Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 70, 687–704 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fichera, G.: Sul pproblem elastostatico di signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 34, 138–142 (1963)

    MATH  Google Scholar 

  21. Gibali, A., Shehu, Y.: An efficient iterative method for finding common fixed point and variational inequalities in Hilbert. Optimization 68(1), 13–32 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gibali, A., Thong, D.V., Tuan, P.A.: Two simple projection-type methods for solving variational inequalities. Anal. Math. Phys. 9, 2203–2225 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Han, D.R., He, H.J., Yang, H., Yuan, X.M.: A customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraints. Numer. Math. 127, 167–200 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, H., Ling, C., Xu, H.K.: A relaxed projection method for split variational inequalities. J. Optim. Theory Appl. 166, 213–233 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, B. -S., Yang, Z. -H., Yuan, X. -M.: An approximate proximal-extragradient type method for monotone variational inequalities. J. Math. Anal. Appl. 300, 362–374 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hendrickx, J.M., Olshevsky, A.: Matrix P-norms are NP-hard to approximate if \({P\neq } 1, 2,\infty \). SIAM J. Matrix Anal. Appl. 31, 2802–2812 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Izuchukwu, C., Mebawondu, A.A., Mewomo, O.T.: A new method for solving split variational inequality problems without co-coerciveness. J. Fixed Point Theory Appl. 22(4). Art. No. 98, 23 pp (2020)

  28. Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions. Optimization. https://doi.org/10.1080/02331934.2020.1808648 (2020)

  29. Izuchukwu, C., Okeke, C.C., Mewomo, O.T.: Systems of variational inequality problem and multiple-sets split equality fixed point problem for infinite families of multivalued type-one demicontractive-type mappings. Ukrainian Math. J. 71, 1480–1501 (2019)

    Google Scholar 

  30. Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: A parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problems. Rend. Circ. Mat. Palermo II 69(3), 711–735 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space Optimization. https://doi.org/10.1080/02331934.2020.1716752 (2020)

  32. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: Strong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach space. J. Optim. Theory Appl. 185(3), 744–766 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Khan, S.H., Alakoya, T.O., Mewomo, O.T.: Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach Spaces. Math. Comput. Appl., accepted . to appear (2020)

  34. Kim, J.K., Salahuddin, S., Lim, W.H.: General nonconvex split variational inequality problems. Korean J. Math. 25, 469–481 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Korpelevich, G.M.: An extragradient method for finding saddle points and for other problems. Ekon. Mat. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  36. Maingé, P.E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 325(1), 469–479 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275–283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ogbuisi, F.U., Mewomo, O.T.: Convergence analysis of an inertial accelerated iterative algorithm for solving split variational inequality problems, Adv. Pure Appl. Math. 10(4), 339–353 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Ogwo, G.N., Izuchukwu, C., Aremu, K.O., Mewomo, O.T.: A viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard space. Bull. Belg. Math. Soc. Simon Stevin 27(1), 127–152 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ogwo, G.N., Izuchukwu, C., Aremu, K.O., Mewomo, O.T.: On 𝜃-generalized demimetric mappings and monotone operators in Hadamard spaces. Demonstr. Math. 53(1), 95–111 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pham, V.H., Nguyen, D.H., Anh, T.V.: A strongly convergent modified Halpern subgradient extragradient method for solving the split variational inequality problem. Vietnam J. Math. 48, 187–204 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Palta, J.R., Mackie, T.R.: Intensity modulated radiation therapy: The state of the art. Medical Physical Monograph. American Association of Physists in Medicine, 29. Medical Physical Publishing, Madison (2003)

  43. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. U.S.S.R. Comput. Math. and Math. Phys. 4(5), 1–17 (1964)

    Article  Google Scholar 

  44. Reich, S., Tuyen, T.M.: A new algorithm for solving the split common null point problem in Hilbert spaces. Numer. Algorithms 83, 789–805 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Reich, S., Tuyen, T.M.: Two projection methods for solving the multiple-set split common null point problem in Hilbert spaces. Optimization 69, 1913–1934 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Reich, S., Tuyen, T.M., Trang, N.M.: Parallel iterative methods for solving the split common fixed point problem in Hilbert spaces. Numer. Funct. Anal. Optim. 41, 778–805 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shehu, Y., Cholamjiak, P.: Iterative method with inertial for variational inequalities in Hilbert spaces. Calcolo 56(1) (2019)

  48. Shehu, Y., Li, X.H., Dong, Q.L.: An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numer. Algorithms 84, 365–388 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Shehu, Y., Dong, Q.L., Jiang, D.: Single projection method for pseudo-monotone variational inequality in Hilbert spaces Optimization. https://doi.org/10.1080/02331934.2018.1522636 (2018)

  50. Süli, E., Mayers, D.F.: An introduction to numerical analysis. Cambridge University Press, Cambridge (2003). x + 433 pp

    Book  MATH  Google Scholar 

  51. Stampacchia, G.: Variational inequalities. In: Theory and Applications of Monotone Operators,Proceedings of the NATO Advanced Study Institute, Venice, Italy, pp 102–192. Edizioni Odersi, Gubbio (1968)

  52. Taiwo, A., Alakoya, T.O., Mewomo, O.T.: Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces. Numer. Algorithms. https://doi.org/10.1007/s11075-020-00937-2 (2020)

  53. Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: General alternative regularization method for solving Split Equality Common Fixed Point Problem for quasi-pseudocontractive mappings in Hilbert spaces. Ric. Mat. 69(1), 235–259 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  54. Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: Inertial-type algorithm for solving split common fixed-point problem in Banach spaces. J. Sci. Comput. https://doi.org/10.1007/s10915-020-01385-9

  55. Thong, D.V., Hieu, D.V.: Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems. Numer. Algorithms 80, 1283–1307 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. Thong, D.V., Shehu, Y., Iyiola, O.S.: Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings. Numer. Algorithms 84, 795–823 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tian, M., Jiang, B.-N.: Viscosity approximation methods for a class of generalized split feasibility problems with variational inequalities in Hilbert space. Numer. Funct. Anal. Optim. 40, 902–923 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tian, M., Jiang, B.-N.: Weak convergence theorem for a class of split variational inequality problems and applications in Hilbert space. J. Inequal. Appl., (123). https://doi.org/10.1186/s13660-017-1397-9 (2017)

  59. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wu, Q., Mohan, R., Niemierko, A., Schmidt-Ullrich, R.: Optimization of intensity-modulated radiotherapy plan based on the equivalent uniform dose. Int. J. Radiat. Oncol. Biol. Phys. 52, 224–235 (2003)

    Article  Google Scholar 

  61. Xu, H.K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inv. Probl. 26, 105018 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yang, J., Liu, H., Liu, Z.: Modified subgradient extragradient algorithms for solving monotone variational inequalities. Optimization 67(12), 2247–2258 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhao, J.: Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms. Optimization 64, 2619–2630 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zhao, J., Hou, D.: A self-adaptive iterative algorithm for the split common fixed point problems. Numer. Algorithms 82, 1047–1063 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous referees for their careful reading, constructive comments, and fruitful suggestions that substantially improved the manuscript. Opinions expressed and conclusions arrived are those of the authors and are not necessarily to be attributed to the CoE-MaSS and NRF.

Funding

The first author received scholarship and financial support from the University of KwaZulu-Natal (UKZN) Doctoral Scholarship. The research of the second author is wholly supported by the National Research Foundation (NRF) South Africa (S& F-DSI/NRF Free Standing Postdoctoral Fellowship; Grant Number: 120784). The second author also received the financial support from DSI/NRF, South Africa Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) Postdoctoral Fellowship. The third author is supported by the National Research Foundation (NRF) of South Africa Incentive Funding for Rated Researchers (Grant Number 119903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. T. Mewomo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Algorithm 1 of He et al. [24]

Stop 0. :

Given a symmetric positive definite matrix \(\mathbb {{H}}\in \mathbb {R}^{m\times m},~~\gamma \in (0,2)\) and \(\rho \in (\rho _{\min \limits },~3)\), where \(\rho _{\min \limits } := \max \limits \left \{-3, \frac {2(v-1)\mu _{1}}{4\zeta _{\max \limits }(T'{H}T)}\right \}\) and \(T:\mathbb {R}^{N}\to \mathbb {R}^{m}\) is a linear operator (where \(T^{\prime }\) means the transpose of T). Set an initial point \(\textbf {u}_{1}:=(x_{1},y_{1},\lambda _{1})\in {\Omega }:=\mathcal {C}\times \mathcal {Q}\times \mathbb {R}^{m}\), where \(\mathcal {C}\) and \(\mathcal {Q}\) are nonempty closed and convex subsets of \(\mathbb {R}^{N}\) and \(\mathbb {R}^{m}\), respectively.

Step 1. :

Generate a predictor \(\tilde {\textbf {u}}_{n}:=(\tilde {x}_{n},\tilde {y}_{n},\tilde {\lambda }_{n})\) with appropriate parameters μ1 and μ2 :

$$ {} \left\{ \begin{array}{ll} \bar{\lambda}_{n}=\lambda_{n}-\mathbb{H}(Tx_{n}-y_{n}),\\ \tilde{x}_{n}=P_{\mathcal{C}}\left[x_{n}-\frac{1}{\mu_{1}}\left( A(x_{n})-T^{\prime}\bar{\lambda}_{n}\right)\right],\\ \hat{\lambda}_{n}=\lambda_{n}-\mathbb{H}(T\hat{x}_{n}-y_{n}),~~~\text{where}~~~ \hat{x}_{n}:=\rho x_{n}+(1-\rho)\tilde{x}_{n},\\ \tilde{y}_{n}=P_{\mathcal{Q}}\left[y_{n}-\frac{1}{\mu_{2}}(F(y_{n})+\hat{\lambda}_{n})\right],\\ \tilde{\lambda}_{n}=\lambda_{n}-\mathbb{H}(T\tilde{x}_{n}-\tilde{y}_{n}). \end{array} \right. $$
(1)
Step 2. :

Update the next iterative un+ 1 := (xn+ 1,yn+ 1,λn+ 1) via

$$ \textbf{u}_{n+1}:=\textbf{u}_{n}-\gamma \alpha_{k} d(\textbf{u}_{n},\tilde{\textbf{u}}_{n}), $$

where

$$ \left\{ \begin{array}{ll} \alpha_{k}:=\frac{\psi(\textbf{u}_{n},\tilde{\textbf{u}}_{n})}{\|d(\textbf{u}_{n},\tilde{\textbf{u}}_{n})\|^{2}},\\ d({\textbf{u}}_{n},\tilde{\textbf{u}}_{n}):=G(\textbf{u}_{n}-\tilde{\textbf{u}}_{n})-\xi_{n},\\ \psi(\textbf{u}_{n},\tilde{\textbf{u}}_{n}):=\left\langle \lambda_{n}-\tilde{\lambda}_{n}, \rho T(x_{n}-\tilde{x}_{n})-(y_{n}-\tilde{y}_{n})\right\rangle+\left\langle \textbf{u}_{n}- \tilde{\textbf{u}}_{n}, d(\textbf{u}_{n}, \tilde{\textbf{u}}_{n})\right\rangle, \end{array} \right. $$

\( \xi _{n}:= \begin {pmatrix} \xi _{n{_{x}}}\\~~~ \xi _{n{_{y}}}\\0\end {pmatrix}:=\begin {pmatrix} A(x_{n})-A(\tilde {x}_{n})+T^{\prime } \mathbb {H}T(x_{n}-\tilde {x}_{n})\\ F(y_{n})-F(\tilde {y}_{n})+\mathbb {H}(y_{n}-\tilde {y}_{n})\\0 \end {pmatrix},\) A and F are monotone and Lipschitz continuous with constants L1 and L2 respectively, and

\(G:=\begin {pmatrix} \mu _{1}I_{N}+\rho T^{\prime }\mathbb {H}T&0&0\\ 0&\mu _{2}I_{m}+\mathbb {H}&0\\ 0&0& \mathbb {H}^{-1}\\ \end {pmatrix}\) is the block diagonal matrix, with identity matrices IN and Im of size N and m, respectively. The parameters μ1 and μ2 are chosen such that

$$ \begin{array}{@{}rcl@{}} \|\xi_{n_{x}}\|\leq v\mu_{1}\|x_{n}-\tilde{x}_{n}\|~~~~~\text{and}~~~~~~~~ \|\xi_{n_{y}}\|\leq v\mu_{2}~\|y_{k}-\tilde{y}_{n}\|,~\text{where}~ v\in(0,1). \end{array} $$

Appendix 2: The algorithm in Reich and Tuyen [44, Theorem 4.4]

For any initial guess \(x_{1}=x\in {\mathscr{H}}_{1}\), define the sequence {xn} by

$$ \begin{array}{@{}rcl@{}} y_{n}&=&VI(\mathcal{C}, ~\lambda_{n} A+I_{\mathcal{H}_{1}}-x_{n}),\\ z_{n}&=&VI(\mathcal{Q}, ~\mu_{n} f+I_{\mathcal{H}_{2}}-Ty_{n}),\\ \mathcal{C}_{n} &=&\{z\in \mathcal{H}_{1} : ||y_{n}-z||\leq ||x_{n}-z||\},\\ \mathcal{D}_{n}&=&\{z\in \mathcal{H}_{1} : ||z_{n}-Tz||\leq ||Ty_{n}-Tz||\},\\ \mathcal{W}_{n}&=&\{z\in \mathcal{H}_{1} : \langle z-x_{n}, x_{1}-x_{n} \rangle \leq 0\},\\ x_{n+1}&=&P_{\mathcal{C}_{n}\cap \mathcal{D}_{n}\cap \mathcal{W}_{n}}(x_{1}),~n\geq 1, \end{array} $$

where \(I_{{\mathscr{H}}_{1}}\) and \(I_{{\mathscr{H}}_{2}}\) are identity operators in \({\mathscr{H}}_{1}\) and \({\mathscr{H}}_{2}\), respectively, and {λn} and {μn} are two given sequences of positive numbers satisfying the following condition:

$$\min\left\lbrace \underset{n}{\inf} \{\lambda_{n}\},~~ \underset{n}{\inf} \{\mu_{n}\} \right\rbrace \geq r>0.$$

Appendix 3: Algorithm 1 of Pham et al. [41]

Step 0. :

Choose \(\mu _{0}, \lambda _{0}>0, ~~\mu , \lambda \in (0, 1),~\{\tau _{n}\}\subset [\underline {\tau },~ \bar {\tau }]\subset \left (0, \frac {1}{||T||^{2}+1}\right ), ~\{\alpha _{n}\} \subset (0, 1)\) such that \(\lim \limits _{n\to \infty } \alpha _{n}=0\) and \({\sum }_{n=1}^{\infty } \alpha _{n}=\infty .\)

Step 1. :

Let \(x_{1}\in {\mathscr{H}}_{1}\). Set n = 1.

Step 2. :

Compute

$$u_{n}=Tx_{n},$$
$$v_{n}=P_{\mathcal{Q}}(u_{n}-\mu_{n} fu_{n}),$$
$$w_{n}=P_{\mathcal{Q}_{n}}(u_{n}-\mu_{n} fv_{n}),$$

where

$$\mathcal{Q}_{n}=\{w_{2}\in \mathcal{H}_{2} : \langle u_{n}-\mu_{n} f u_{n}-v_{n}, w_{2}-v_{n}\rangle\leq 0\}$$

and

$$ \mu_{n+1}=\begin{cases} \min\left\lbrace\frac{\mu||u_{n}-v_{n}||}{||fu_{n}-fv_{n}||},~\mu_{n}\right\rbrace,& \text{if}~fu_{n}\neq fv_{n},\\ \mu_{n},& \text{otherwise}. \end{cases} $$
Step 3. :

Compute

$$y_{n}=x_{n}+\tau_{n} T^{*}(w_{n}-u_{n}),$$
$$z_{n}=P_{\mathcal{C}}(y_{n}-\lambda_{n} Ay_{n}),$$
$$t_{n}=P_{\mathcal{C}_{n}}(y_{n}-\lambda_{n} Az_{n}),$$

where

$$\mathcal{C}_{n}=\{w_{1}\in \mathcal{H}_{1} : \langle y_{n}-\lambda_{n} A y_{n}-z_{n}, w_{1}-z_{n}\rangle\leq 0\}$$

and

$$ \lambda_{n+1}=\begin{cases} \min\left\lbrace\frac{\lambda||y_{n}-z_{n}||}{||Ay_{n}-Az_{n}||},~\lambda_{n}\right\rbrace,& \text{if}~Ay_{n}\neq Az_{n},\\ \lambda_{n},& \text{otherwise}. \end{cases} $$
Step 4. :

Compute

$$x_{n+1}=\alpha_{n} x_{1}+(1-\alpha_{n}) t_{n}.$$

Set n := n + 1 and go back to Step 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogwo, G.N., Izuchukwu, C. & Mewomo, O.T. Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity. Numer Algor 88, 1419–1456 (2021). https://doi.org/10.1007/s11075-021-01081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01081-1

Keywords

Mathematics Subject Classification 2010

Navigation