Skip to main content

Advertisement

Log in

Research on mechanism and control methods of carbody chattering of an electric multiple-unit train

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Carbody chattering is an abnormal vibration that severely deteriorates the ride quality of a railway vehicle. However, systematic studies on the mechanisms and control methods of carbody chattering are inadequate. Hence, in-situ tests, wheel and rail profile tests, modal parameter tests, and root locus analyses were conducted for an electric multiple-unit train to study the carbody chattering mechanism. Results show significant concave wear on wheel treads that have not yet met their wheel-turning mileages. When the vehicle moves from a carbody non-chattering to a chattering section, the wheel–rail contact positions are scattered and jumping is observed; then, the wheel–rail contact conicity increases rapidly, causing the modal damping ratio of the bogie hunting motion to reduce to 0, the bogie to change from stable to critical-unstable state, and bogie hunting motion frequency to increase close to the modal frequency of the carbody diamond-shaped deformation, thereby triggering synchronous movement. This amplifies the modal vibration, causing carbody chattering. Therefore, three control methods are proposed for carbody chattering—turning worn wheels; grinding rail profiles in the carbody chattering section; and synchronous optimisation of the primary longitudinal and lateral positioning stiffness, node stiffness, and damping coefficient of the yaw damper—according to the multi-objective synchronisation optimisation method to improve operational stability and ride quality. Test results show that all three methods effectively control carbody chattering; compared to the original vehicle, the amplitude of carbody chattering acceleration at 10 Hz can be reduced by 90%, 40% and 60% for the three methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Zhou, J., Goodall, R., Ren, L., Zhang, H.: Influences of car body vertical flexibility on ride quality of passenger railway vehicles. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 223, 461–471 (2009)

    Article  Google Scholar 

  2. Gong, D., Zhou, J.-S., Sun, W.-J.: On the resonant vibration of a flexible railway car body and its suppression with a dynamic vibration absorber. J. Vib. Control 19, 649–657 (2013)

    Article  Google Scholar 

  3. Schandl, G., Lugner, P., Benatzky, C., Kozek, M., Stribersky, A.: Comfort enhancement by an active vibration reduction system for a flexible railway car body. Veh. Syst. Dyn. 45, 835–847 (2007)

    Article  Google Scholar 

  4. Takigami, T., Tomioka, T.: Investigation to suppress bending vibration of railway vehicle carbodies using piezoelectric elements. Q. Rep. RTRI 46, 225–230 (2005)

    Article  Google Scholar 

  5. Shi, H., Luo, R., Wu, P., Zeng, J., Guo, J.: Application of DVA theory in vibration reduction of carbody with suspended equipment for high-speed EMU. Sci. China, Technol. Sci. 57, 1425–1438 (2014)

    Article  Google Scholar 

  6. Tomioka, T., Takigami, T.: Reduction of bending vibration in railway vehicle carbodies using carbody–bogie dynamic interaction. Veh. Syst. Dyn. 48, 467–486 (2010)

    Article  Google Scholar 

  7. Huang, C., Zeng, J., Liang, S.: Carbody hunting investigation of a high speed passenger car. J. Mech. Sci. Technol. 27, 2283–2292 (2013)

    Article  Google Scholar 

  8. Sun, J., Chi, M., Jin, X., Liang, S., Wang, J., Li, W.: Experimental and numerical study on carbody hunting of electric locomotive induced by low wheel–rail contact conicity. Veh. Syst. Dyn. (2019). https://doi.org/10.1080/00423114.2019.1674344

    Article  Google Scholar 

  9. Xia, Z., Zhou, J., Liang, J., Ding, S., Gong, D., Sun, W., et al.: Online detection and control of car body low-frequency swaying in railway vehicles. Veh. Syst. Dyn. 59, 70–100 (2021)

    Article  Google Scholar 

  10. Jeon, C.-S., Kim, Y.-G., Park, J.-H., Kim, S.-W., Park, T.-W.: A study on the dynamic behavior of the Korean next-generation high-speed train. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 230, 1053–1065 (2015)

    Article  Google Scholar 

  11. Baker, C., Cheli, F., Orellano, A., Paradot, N., Proppe, C., Rocchi, D.: Cross-wind effects on road and rail vehicles. Veh. Syst. Dyn. 47, 983–1022 (2009)

    Article  Google Scholar 

  12. Shabana, A.A., Sany, J.R.: A survey of rail vehicle track simulations and flexible multibody dynamics. Multibody Syst. Dyn. 26, 179–210 (2001)

    MATH  Google Scholar 

  13. Carlbom, P.: Combining MBS with FEM for rail vehicle dynamics analysis. Multibody Syst. Dyn. 6, 291–300 (2001)

    Article  Google Scholar 

  14. Zhou, J., Du, Z., Yang, Z., Xu, Z.: Dynamics study of straddle-type monorail vehicle with single-axle bogies-based full-scale rigid-flexible coupling dynamic model. IEEE Access 7, 2933991 (2019)

    Google Scholar 

  15. Eberhard, P., Dignath, F., Kuebler, L.: Parallel evolutionary optimization of multibody systems with application to railway dynamics. Multibody Syst. Dyn. 9, 143–164 (2003)

    Article  Google Scholar 

  16. Gong, D., Zhou, J., Sun, W., Sun, Y., Xia, Z.: Method of multi-mode vibration control for the carbody of high-speed electric multiple unit trains. J. Sound Vib. 409, 94–111 (2017)

    Article  Google Scholar 

  17. Qi, Y., Dai, H., Song, C., Qu, S.: Shaking analysis of high-speed train’s carbody when cross lines. J. Mech. Sci. Technol. 33, 1055–1064 (2019)

    Article  Google Scholar 

  18. The Standardization Administration of the People’s Republic of China: GB/T 5599-2019 Specification for Locomotive and Vehicle Dynamic Performance Evaluation and Test Identification. Standards Press of China, Beijing (2019)

    Google Scholar 

  19. International Union of Railways: UIC 519-2004 Method for Determining the Equivalent Conicity. International Union of Railway, Paris (2004)

    Google Scholar 

  20. Xiang, T., Lan, D., Zhang, S., Li, W., Lin, D.: Experimental modal test of the spiral bevel gear wheel using the PolyMAX method. J. Mech. Sci. Technol. 32, 21–28 (2018)

    Article  Google Scholar 

  21. Peeters, B., Van der Auweraer, H., Guillaume, P., Leuridan, J.: The PolyMAX frequency-domain method: a new standard for modal parameter estimation? Shock Vib. 11, 395–409 (2004)

    Article  Google Scholar 

  22. Kalker, J.J.: A fast algorithm for the simplified theory of rolling contact. Veh. Syst. Dyn. 11, 1–13 (1982)

    Article  Google Scholar 

  23. Simon, I., Maksym, S., Colin, C., Tim, M.: Handbook of Railway Vehicle Dynamics, 2nd edn. CRC Press, Boca Raton (2020)

    Google Scholar 

  24. Ahmadian, M., Yang, S.: Effect of system nonlinearities on locomotive bogie hunting stability. Veh. Syst. Dyn. 29, 365–384 (1998)

    Article  Google Scholar 

  25. Choi, Y.-S., Shin, B.-S.: Critical speed of high-speed trains considering wheel–rail contact. J. Mech. Sci. Technol. 29, 4593–4600 (2015)

    Article  Google Scholar 

  26. Suzuki, Y., Akutsu, K.: Theoretical analysis of flexural vibration of car body. Q. Rep. RTRI 31, 42–48 (1990)

    Google Scholar 

  27. Guyan, R.J.: Reduction of stiffness and mass matrices. AIAA J. 3, 380 (1965)

    Article  Google Scholar 

  28. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by National Natural Science Foundation of China (Grant No. 51805373).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao Gong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Table 8 Dynamic parameters of the carbody

Appendix B

$$\begin{aligned} \mathbf{M} = &\mathrm{diag}\left [ m_{t} \quad m_{t} \quad I_{tx} \quad I_{ty} \quad I_{tz} \quad m_{w} \quad I_{wz} \quad m_{w} \quad I_{wz} \quad m_{t} \quad m_{t} \quad I_{tx} \quad I_{ty} \quad I_{tz} \quad m_{w} \right. \\ &\left. \qquad I_{wz} \quad m_{w}\quad I_{wz} \quad m_{c} \quad m_{c} \quad I_{cx} \quad I_{cy} \quad I_{cz} \right ] \end{aligned}$$
$$ \left ( \mathbf{C} + \mathbf{C}_{\mathbf{W} - \mathbf{R}}/v \right )_{1\sim 3} \!=\! \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} 2c_{ys} & 0 & 2c_{ys}h_{tsc} \\ 0 & 4c_{zp} + 2c_{zs} & 0 \\ 2c_{ys}h_{tsc} & 0 & 4c_{zp}d_{pc}^{2} + 2c_{zs}d_{sc}^{2} + 2c_{ys}h_{tsc}^{2} \\ 0 & 0 & - 2c_{zs}d_{sc}l_{tsv} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ - 2c_{ys} & 0 & - 2c_{ys}h_{tsc} \\ 0 & - 2c_{zs} & 0 \\ - 2c_{ys}h_{csc} & 0 & - 2c_{zs}d_{sc}^{2} - 2c_{ys}h_{tsc}h_{csc} \\ 0 & c_{zs}\left ( l_{scv1} + l_{scv2} \right ) & c_{zs}d_{sc}\left ( l_{scv1} - l_{scv2} \right ) \\ - c_{ys}\left ( l_{sc1} + l_{sc2} \right ) & 0 & - c_{ys}h_{tsc}\left ( l_{sc1} + l_{sc2} \right ) \end{array}\displaystyle \right ], $$
$$ \left ( \mathbf{C} + \mathbf{C}_{\mathbf{W} - \mathbf{R}}/v \right )_{4\sim 6} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ - 2c_{zs}l_{tsv}d_{sc} & 0 & 0 \\ 4c_{zp}l_{c}^{2} + 2c_{zs}l_{tsv}^{2} & 0 & 0 \\ 0 & c_{fs} + 2c_{ys}l_{tsc}^{2} & 0 \\ 0 & 0 & 2f_{22}/v \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2c_{zs}l_{tsv}d_{sc} & 0 & 0 \\ c_{zs}l_{tsv}\left ( l_{scv2} - l_{scv1} \right ) & 0 & 0 \\ 0 & c_{ys}l_{tsc}\left ( l_{sc2} - l_{sc1} \right ) - c_{fs} & 0 \end{array}\displaystyle \right ] $$
$$ \left ( \mathbf{C} + \mathbf{C}_{\mathbf{W} - \mathbf{R}}/v \right )_{7\sim 9} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2b^{2}f_{11}/v & 0 & 0 \\ 0 & 2f_{22}/v & 0 \\ 0 & 0 & 2b^{2}f_{11}/v \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\displaystyle \right ], $$
$$ \left ( \mathbf{C} \!+\! \mathbf{C}_{\mathbf{W} - \mathbf{R}}/v \right )_{10\sim 12} \!=\! \left [\! \textstyle\begin{array}{c@{\quad }c@{\quad }c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2c_{ys} & 0 & 2c_{ys}h_{tsc} \\ 0 & 4c_{zp} + 2c_{zs} & 0 \\ 2c_{ys}h_{tsc} & 0 & 4c_{zp}d_{pc}^{2} + 2c_{zs}d_{sc}^{2} + 2c_{ys}h_{tsc}^{2} \\ 0 & 0 & - 2c_{zs}d_{sc}l_{tsv} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ - 2c_{ys} & 0 & - 2c_{ys}h_{tsc} \\ 0 & - 2c_{zs} & 0 \\ - 2c_{ys}h_{\csc } & 0 & - 2c_{zs}d_{sc}^{2} - 2c_{ys}h_{tsc}h_{csc} \\ 0 & - c_{zs}\left ( l_{scv1} + l_{scv2} \right ) & c_{zs}d_{sc}\left ( l_{scv1} - l_{scv2} \right ) \\ c_{ys}\left ( l_{sc1} + l_{sc2} \right ) & 0 & c_{ys}h_{tsc}\left ( l_{sc1} + l_{sc2} \right ) \end{array}\displaystyle \! \right ] $$
$$ \left ( \mathbf{C} + \mathbf{C}_{\mathbf{W} - \mathbf{R}}/v \right )_{13\sim 15} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ - 2c_{zs}l_{tsv}d_{sc} & 0 & 0 \\ 4c_{zp}l_{c}^{2} + 2c_{zs}l_{tsv}^{2} & 0 & 0 \\ 0 & c_{fs} + 2c_{ys}l_{tsc}^{2} & 0 \\ 0 & 0 & 2f_{22}/v \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2c_{zs}l_{tsv}d_{sc} & 0 & 0 \\ c_{zs}l_{tsv}\left ( l_{scv2} - l_{scv1} \right ) & 0 & 0 \\ 0 & c_{ys}l_{tsc}\left ( l_{sc2} - l_{sc1} \right ) - c_{fs} & 0 \end{array}\displaystyle \right ] $$
$$ \left ( \mathbf{C} + \mathbf{C}_{\mathbf{W} - \mathbf{R}}/v \right )_{16\sim 18} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2b^{2}f_{11}/v & 0 & 0 \\ 0 & 2f_{22}/v & 0 \\ 0 & 0 & 2b^{2}f_{11}/v \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\displaystyle \right ] $$
$$ \left ( \mathbf{C} + \mathbf{C}_{\mathbf{W} - \mathbf{R}}/v \right )_{19\sim 21} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} - 2c_{ys} & 0 & - 2c_{ys}h_{csc} \\ 0 & - 2c_{zs} & 0 \\ - 2c_{ys}h_{tsc} & 0 & - 2c_{zs}d_{sc}^{2} - 2c_{ys}h_{\csc } h_{tsc} \\ 0 & 0 & 2c_{zs}d_{sc}l_{tsv} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ - 2c_{ys} & 0 & - 2c_{ys}h_{csc} \\ 0 & - 2c_{zs} & 0 \\ - 2c_{ys}h_{tsc} & 0 & - 2c_{zs}d_{sc}^{2} - 2c_{ys}h_{\csc } h_{tsc} \\ 0 & 0 & 2c_{zs}d_{sc}l_{tsv} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 4c_{ys} & 0 & 4c_{ys}h_{csc} \\ 0 & 4c_{zs} & 0 \\ 4c_{ys}h_{csc} & 0 & 4c_{zs}d_{sc}^{2} + 4c_{ys}h_{csc}^{2} \\ 0 & 0 & 2c_{zs}d_{sc}\left ( l_{scv2} - l_{scv1} \right ) \\ 0 & 0 & 0 \end{array}\displaystyle \right ], $$
$$ \left ( \mathbf{C} + \mathbf{C}_{\mathbf{W} - \mathbf{R}}/v \right )_{22\sim 23} = \left [ \textstyle\begin{array}{c@{\quad }c} 0 & - c_{ys}\left ( l_{sc1} + l_{sc2} \right ) \\ c_{zs}\left ( l_{scv1} + l_{scv2} \right ) & 0 \\ c_{zs}d_{sc}\left ( l_{scv1} - l_{scv2} \right ) & - c_{ys}h_{tsc}\left ( l_{sc1} + l_{sc2} \right ) \\ c_{zs}l_{tsv}\left ( l_{scv2} - l_{scv1} \right ) & 0 \\ 0 & c_{ys}l_{tsc}\left ( l_{sc2} - l_{sc1} \right ) - c_{fs} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & c_{ys}\left ( l_{sc1} + l_{sc2} \right ) \\ - c_{zs}\left ( l_{scv1} + l_{scv2} \right ) & 0 \\ c_{zs}d_{sc}\left ( l_{scv1} - l_{scv2} \right ) & c_{ys}h_{tsc}\left ( l_{sc1} + l_{sc2} \right ) \\ c_{zs}l_{tsv}\left ( l_{scv2} - l_{scv1} \right ) & 0 \\ 0 & c_{ys}l_{tsc}\left ( l_{sc2} - l_{sc1} \right ) - c_{fs} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 2c_{zs}d_{sc}\left ( l_{scv2} - l_{scv1} \right ) & 0 \\ 2c_{zs}\left ( l_{scv1}^{2} + l_{scv2}^{2} \right ) & 0 \\ 0 & 2c_{fs} + 2c_{ys}\left ( l_{sc1}^{2} + l_{sc2}^{2} \right ) \end{array}\displaystyle \right ] $$
$$\begin{aligned} &\left ( \mathbf{K} + \mathbf{K}_{\mathbf{W} - \mathbf{R}} \right )_{1\sim 3}\\ &\quad = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} k_{ty} + 2k_{yp} + k_{ys} & 0 & 2k_{yp}h_{tp} - k_{ty}h_{ttk} - k_{ys}h_{tsk} \\ 0 & 4k_{zp} + 2k_{zs} & 0 \\ 2k_{yp}h_{tp} - k_{ty}h_{ttk} - k_{ys}h_{tsk} & 0 & k_{tb} + 4k_{zp}d_{p}^{2} + 2k_{zs}d_{s}^{2} + 2k_{yp}h_{tp}^{2} + 2k_{ys}h_{tsk}^{2} \\ 0 & 0 & - 2k_{zs}d_{s}l_{tsk} \\ 0 & 0 & 0 \\ - k_{yp} & 0 & - k_{yp}h_{tp} \\ 0 & 0 & 0 \\ - k_{yp} & 0 & - k_{yp}h_{tp} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ - k_{ty} - k_{ys} & 0 & k_{ty}h_{ttk} + k_{ys}h_{tsk} \\ 0 & - 2k_{zs} & 0 \\ - k_{ty}h_{ctr} - k_{ys}h_{csk} & 0 & k_{tb} - 2k_{zs}d_{s}^{2} + k_{ty}h_{ttk}h_{ctr} + k_{ys}h_{tsk}h_{csk} \\ 0 & k_{zs}\left ( l_{skv1} + l_{skv2} \right ) & k_{zs}d_{s}\left ( l_{sck1} - l_{sck2} \right ) \\ - \left ( k_{ty} + k_{ys} \right )l_{ss} & 0 & \left ( k_{ty}h_{ttk} + k_{ys}h_{tsk} \right )l_{ss} \end{array}\displaystyle \right ] \end{aligned}$$
$$ \left ( \mathbf{K} + \mathbf{K}_{\mathbf{W} - \mathbf{R}} \right )_{4\sim 6} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} 0 & 0 & - k_{yp} \\ 0 & 0 & 0 \\ - 2k_{zs}l_{tsk}d_{s} & 0 & - k_{yp}h_{tp} \\ 4k_{zp}a^{2} + 2k_{zs}l_{tsk}^{2} & 0 & 0 \\ 0 & k_{fs} + 2k_{yp}a^{2} + 4k_{xp}d_{p}^{2} & - k_{yp}a \\ 0 & - k_{yp}a & k_{yp} \\ 0 & - 2k_{xp}d_{p}^{2} & 2bf_{11}s/r_{0} \\ 0 & k_{yp}a & 0 \\ 0 & - 2k_{xp}d_{p}^{2} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2k_{zs}l_{tsk}d_{s} & 0 & 0 \\ k_{zs}l_{tsk}\left ( l_{skv2} - l_{skv1} \right ) & 0 & 0 \\ 0 & - k_{fs} & 0 \end{array}\displaystyle \right ], $$
$$ \left ( \mathbf{K} + \mathbf{K}_{\mathbf{W} - \mathbf{R}} \right )_{7\sim 9} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} 0 & - k_{yp} & 0 \\ 0 & 0 & 0 \\ 0 & - k_{yp}h_{tp} & 0 \\ 0 & 0 & 0 \\ - 2k_{xp}d_{p}^{2} & k_{yp}a & - 2k_{xp}d_{p}^{2} \\ - 2f_{22} & 0 & 0 \\ 2k_{xp}d_{p}^{2} & 0 & 0 \\ 0 & k_{yp} & - 2f_{22} \\ 0 & 2bf_{11}s/r_{0} & 2k_{xp}d_{p}^{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\displaystyle \right ] $$
$$\begin{aligned} &\left ( \mathbf{K} + \mathbf{K}_{\mathbf{W} - \mathbf{R}} \right )_{10\sim 12} \\ &\quad = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ k_{ty} + 2k_{yp} + k_{ys} & 0 & 2k_{yp}h_{tp} - k_{ty}h_{ttk} - k_{ys}h_{tsk} \\ 0 & 4k_{zp} + 2k_{zs} & 0 \\ 2k_{yp}h_{tp} - k_{ty}h_{ttk} - k_{ys}h_{tsk} & 0 & k_{tb} + 4k_{zp}d_{p}^{2} + 2k_{zs}d_{s}^{2} + 2k_{yp}h_{tp}^{2} + 2k_{ys}h_{tsk}^{2} \\ 0 & 0 & - 2k_{zs}d_{s}l_{tsk} \\ 0 & 0 & 0 \\ - k_{yp} & 0 & - k_{yp}h_{tp} \\ 0 & 0 & 0 \\ - k_{yp} & 0 & - k_{yp}h_{tp} \\ 0 & 0 & 0 \\ - k_{ty} - k_{ys} & 0 & k_{ty}h_{ttk} + k_{ys}h_{tsk} \\ 0 & - 2k_{zs} & 0 \\ - k_{ty}h_{ctr} - k_{ys}h_{csk} & 0 & k_{tb} - 2k_{zs}d_{s}^{2} + k_{ty}h_{ttk}h_{ctr} + k_{ys}h_{tsk}h_{csk} \\ 0 & - k_{zs}\left ( l_{skv1} + l_{skv2} \right ) & k_{zs}d_{s}\left ( l_{sck1} - l_{sck2} \right ) \\ \left ( k_{ty} + k_{ys} \right )l_{ss} & 0 & - \left ( k_{ty}h_{ttk} + k_{ys}h_{tsk} \right )l_{ss} \end{array}\displaystyle \right ] \end{aligned}$$
$$ \left ( \mathbf{K} + \mathbf{K}_{\mathbf{W} - \mathbf{R}} \right )_{13\sim 15} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & - k_{yp} \\ 0 & 0 & 0 \\ - 2k_{zs}l_{tsk}d_{s} & 0 & - k_{yp}h_{tp} \\ 4k_{zp}a^{2} + 2k_{zs}l_{tsk}^{2} & 0 & 0 \\ 0 & k_{fs} + 2k_{yp}a^{2} + 4k_{xp}d_{p}^{2} & - k_{yp}a \\ 0 & - k_{yp}a & k_{yp} \\ 0 & - 2k_{xp}d_{p}^{2} & 2bf_{11}s/r_{0} \\ 0 & k_{yp}a & 0 \\ 0 & - 2k_{xp}d_{p}^{2} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2k_{zs}l_{tsk}d_{s} & 0 & 0 \\ k_{zs}l_{tsk}\left ( l_{skv2} - l_{skv1} \right ) & 0 & 0 \\ 0 & - k_{fs} & 0 \end{array}\displaystyle \right ], $$
$$ \left ( \mathbf{K} + \mathbf{K}_{\mathbf{W} - \mathbf{R}} \right )_{16\sim 18} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & - k_{yp} & 0 \\ 0 & 0 & 0 \\ 0 & - k_{yp}h_{tp} & 0 \\ 0 & 0 & 0 \\ - 2k_{xp}d_{p}^{2} & k_{yp}a & - 2k_{xp}d_{p}^{2} \\ - 2f_{22} & 0 & 0 \\ 2k_{xp}d_{p}^{2} & 0 & 0 \\ 0 & k_{yp} & - 2f_{22} \\ 0 & 2bf_{11}s/r_{0} & 2k_{xp}d_{p}^{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\displaystyle \right ] $$
$$\begin{aligned} &\left ( \mathbf{K} + \mathbf{K}_{\mathbf{W} - \mathbf{R}} \right )_{19\sim 21} \\ &\quad = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c} - k_{ty} - k_{ys} & 0 & - k_{ty}h_{ctr} - k_{ys}h_{csk} \\ 0 & - 2k_{zs} & 0 \\ k_{ty}h_{ttk} + k_{ys}h_{tsk} & 0 & k_{tb} - 2k_{zs}d_{s}^{2} + k_{yp}h_{ctr}h_{ttk} + k_{ys}h_{csk}h_{tsk} \\ 0 & 0 & 2k_{zs}d_{s}l_{tsk} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ - k_{ty} - k_{ys} & 0 & - k_{ty}h_{ctr} - k_{ys}h_{csk} \\ 0 & - 2k_{zs} & 0 \\ k_{ty}h_{ttk} + k_{ys}h_{tsk} & 0 & k_{tb} - 2k_{zs}d_{s}^{2} + k_{yp}h_{ctr}h_{ttk} + k_{ys}h_{csk}h_{tsk} \\ 0 & 0 & 2k_{zs}d_{s}l_{tsk} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 2k_{ty} + 2k_{ys} & 0 & 2k_{ty}h_{ctr} + 2k_{ys}h_{csk} \\ 0 & 4k_{zs} & 0 \\ 2k_{ty}h_{ctr} + 2k_{ys}h_{csk} & 0 & 2k + 4k_{zs}d_{s}^{2} + 2k_{yp}h_{ctr}h_{ttk} + 2k_{ys}h_{csk}h_{tsk} \\ 0 & 0 & 2k_{zs}d_{s}\left ( l_{sck2} - l_{sck1} \right ) \\ 0 & 0 & 0 \end{array}\displaystyle \right ], \end{aligned}$$
$$ \left ( \mathbf{K} + \mathbf{K}_{\mathbf{W} - \mathbf{R}} \right )_{22\sim 23} = \left [ \textstyle\begin{array}{c@{\quad }c} 0 & - \left ( k_{ty} + k_{ys} \right )l_{ss} \\ k_{zs}\left ( l_{sck1} + l_{sck2} \right ) & 0 \\ k_{zs}d_{s}\left ( l_{skv1} - l_{skv2} \right ) & \left ( k_{ty}h_{ttk} + k_{ys}h_{tsk} \right )l_{ss} \\ k_{zs}l_{tsk}\left ( l_{skv2} - l_{skv1} \right ) & 0 \\ 0 & - k_{fs} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \left ( k_{ty} + k_{ys} \right )l_{ss} \\ - k_{zs}\left ( l_{skv1} + l_{skv2} \right ) & 0 \\ k_{zs}d_{s}\left ( l_{skv1} - l_{skv2} \right ) & - \left ( k_{ty}h_{ttk} + k_{ys}h_{tsk} \right )l_{ss} \\ k_{zs}l_{tsk}\left ( l_{skv2} - l_{skv1} \right ) & 0 \\ 0 & - k_{fs} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 2k_{zs}d_{s}\left ( l_{skv2} - l_{skv1} \right ) & 0 \\ 2k_{zs}\left ( l_{skv1}^{2} + l_{skv2}^{2} \right ) & 0 \\ 0 & 2k_{fs} + 2\left ( k_{ty} + k_{ys} \right )l_{ss}^{2} \end{array}\displaystyle \right ] $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, D., Liu, G. & Zhou, J. Research on mechanism and control methods of carbody chattering of an electric multiple-unit train. Multibody Syst Dyn 53, 135–172 (2021). https://doi.org/10.1007/s11044-021-09779-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-021-09779-9

Keywords

Navigation