Skip to main content
Log in

Study on the Laser Beam Polarization Based on LabVIEW

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

With the wide application of laser technology in laser processing and photoelectric detection, the measurement and display of the laser beam polarization has become an extremely important prerequisite. In this paper, we realize the laser polarization measurement tool based on the virtual instrument LabVIEW software platform. The set-up is designated to measure the Stokes parameters for an arbitrarily polarized beam, using the rotating waveplate method provided by the stepper motor, drive circuit, photodetector, and computer processing of the digitized electrical signal in the PCI expansion card. The Poincare sphere is used for the interpretation of the state of polarization (SOP) and degree of polarization (DOP). The working wavelength range is declared to be 400 – 1100 nm, the accuracy of DOP, azimuth measurement, and ellipticity are ±2%, 0.4°, and 0.4°, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Wu, C. Ming, Z. Zhe, et al., Sci. China Inf. Sci., 61, 040301 (2018).

  2. L. Gerhard, Evid.-Based Complementary Altern. Med, 2012, 103109 (2012).

    Google Scholar 

  3. X. Wei, Z. Liu, X. Jin, et al., Anal. Chim. Acta, 950, 147 (2017).

    Article  Google Scholar 

  4. H. Xiao, S. M. Li, W. J. Xiao, et al., Mat. Lett., 188, 260 (2017).

    Article  Google Scholar 

  5. A. Michalcová, L. Sencekova, G. Rolink, et al., Mater. Des., 116, 481 (2017).

  6. H. Li and X. Sang, Sens. Actuator A Phys., 258, 156 (2017).

    Article  Google Scholar 

  7. A. Belmonte, M. T. Taylor, L. Hollberg, et al., Opt. Express, 25, 15676 (2017).

    Article  ADS  Google Scholar 

  8. A. Camposeo, I. Greenfeld, F. Tantussi, et al., Macromolecules, 47, 4704 (2014).

    Article  ADS  Google Scholar 

  9. Z. Sun, J. Zhang, Z. Tong, et al., J. Quant. Spectrosc. Radiat. Transf., 133, 1 (2014).

    Article  ADS  Google Scholar 

  10. E. J. Galvez, B. L. Rojec, V. Kumar, et al., Phys. Rev. A, 89, 031801(R) (2014).

  11. L. Carbone, R. Brunetti, C. Jacoboni, et al., J. Semicond. Technol. Sci., 9(5S), 674 (2016).

  12. X. D. Chen, Z. L. Deng, W. J. Chen, et al., Phys. Rev. B, 92, 014210 (2015).

  13. J. Li, S. Chen, H. Yang, et al., Adv. Funct. Mater., 25, 704 (2015).

    Article  Google Scholar 

  14. R. Mitsch, C. Sayrin, B. Albrecht, et al., Phys. Rev. A, 89, 063829 (2014).

    Article  ADS  Google Scholar 

  15. D. Wen, F. Yue, S. Kumar, et al., Opt. Express, 23, 10272 (2015).

    Article  ADS  Google Scholar 

  16. V. Dinu, T. Heinzl, A. Ilderton, et al., Phys. Rev. D, 90, 3777 (2014).

    Article  Google Scholar 

  17. S. Z. Ping, H. Jin, and Q. Y. Li, Chin. J. Quantum Electron., 26, 268 (2009).

    Google Scholar 

  18. D. U. Xi-Liang and D. Jing-Min, Opto-Electronic Eng., 33, 57 (2006).

    Google Scholar 

  19. Z. Muchun, Chin. J. Sci. Instrum., 8, 1890 (2005).

    Google Scholar 

  20. L. V. Liang, L. H. Zhai, L. I. Zhu-Hong, et al., Phys. Exp. College, 25, 54 (2012).

    Google Scholar 

  21. S. Huo, C. Hu, Y. Li, et al., Appl. Opti., 53, 7081 (2014).

    Article  ADS  Google Scholar 

  22. M.-X. Cheng, Z.-J. He, and Z.-H. Huang, Opto-Electronic Engineering, 35, 93 (2008).

    Google Scholar 

  23. A. Upadhyay and A. L. Chakraborty, IEEE Sensors J., 15, 1153 (2015).

    Article  ADS  Google Scholar 

  24. F. Q. Luo, W. R. Cai, F. J. Wang, et al., Laser J., 30, 22 (2009).

    Google Scholar 

  25. Q. Di, W. Zhang, X. Weng, and X. Zhang, Acta Optica Sinica, 30, s100211 (2010).

    Google Scholar 

  26. L. Zhang, G. Pu, and L. Yi, Study Opt. Commun., 46, 40 (2020).

    Google Scholar 

  27. S. Chen and X. Liu, LabVIEW Collection, Publishing House of Electronics Industry, Beijing (2011).

    Google Scholar 

  28. L. Y. Pei, M. A. Jing, X. U. Can-Hua, et al., Acta Photon. Sinica, 44, 92 (2015).

    Google Scholar 

  29. B. N. Nyushkov, V. S. Pivtsov, N. A. Koliada, et al., Quantum Electron., 45, 486 (2015).

    Article  ADS  Google Scholar 

  30. Y. Liu, H. Jiang, L. Zhang, et al., Proc. SPIE, 10155, 1015521 (2016).

    Google Scholar 

  31. S. Sen, S. K. Pal, and S. Mukhopadhyay, J. Opt., 43, 154(2014).

    Article  Google Scholar 

  32. S. Ma, H. Yu, H. Zhang, et al., Sci. Rep., 6, 30517 (2016).

    Article  ADS  Google Scholar 

  33. B. Kunnen, C. Macdonald, A. Doronin, et al., J. Biophoton., 8, 317 (2015).

    Article  Google Scholar 

  34. W. Hou, R. A. Arnone, R. Foster, et al., Proc. SPIE, 10186, 101860N (2017).

    Google Scholar 

  35. B. Chen, D. Li, and Y. Zhang, Appl. Opt., 55, 2681 (2016).

    Article  ADS  Google Scholar 

  36. A. K. Tornberg and M. J. Shelley, J. Comput. Phys., 196, 8 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  37. E. E. Gorodnichev, Phys. Atom. Nuclei, 79, 1671 (2016).

    Article  ADS  Google Scholar 

  38. R. Shirvany, M. Chabert, J. Y. Tourneret, IEEE Trans. Geosci. Remote Sens., 51, 539 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongliang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, Y., Zhang, Y. et al. Study on the Laser Beam Polarization Based on LabVIEW. J Russ Laser Res 42, 232–236 (2021). https://doi.org/10.1007/s10946-021-09955-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09955-4

Keywords

Navigation