Skip to main content
Log in

Gaussian Pulse Propagation via Bright and Dark Solitons through an Atomic Medium

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We study the Gaussian pulse propagation and its absorption, dispersion, and distortion in an atomic medium for advanced optical technology. The output pulse intensity distribution in time and Rabi oscillations, as well as the phase of control fields, show significant dark and bright forms of soliton shapes. We investigate the localized intensity of dark and bright solitons with the intensity of control fields in time domain within the normal and anomalous group velocity dispersion regions. Uniform undistorted pulse intensity and bright soliton are noted in time domain with the phase variation of control fields. These theoretical results are useful for optical fibers due to their minimum losses of the signal quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hasegawa and F. Tappert, Appl. Phys. Lett., 23, 142 (1973).

    ADS  Google Scholar 

  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett., 45, 1095 (1980).

    Article  ADS  Google Scholar 

  3. M. N. Islam, Ultrafast Fiber Switiching Devices and Systems, Cambridge University Press (1992).

  4. G. P. Agarwal, Nonlinear Fiber Optics, Academic Press, New York (1989).

    Google Scholar 

  5. G. P. Agarwal and Y. S. Kivshar, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, New York (2003).

    Google Scholar 

  6. P. G. Drazin and R. S. Johnson, Solitons. Introduction, 2nd ed., Cambridge Texts in Applied Mathematics (1989).

  7. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett., 15, 240 (1965).

    Article  ADS  Google Scholar 

  8. L. Khaykovich, F. Schreck, G. Ferrari, et al., Science, 296, 1290 (2002).

    Article  ADS  Google Scholar 

  9. K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, New J. Phys., 5, 73 (2003).

    Article  ADS  Google Scholar 

  10. T. Heimburg and A. D. Jackson, Proc. Nat. Acad. Sci., 102, 9790 (2005).

    Article  ADS  Google Scholar 

  11. J. Wu, R. Keolian, and J. Rudnick, Phys. Rev. Lett., 52, 1421 (1984).

    Article  ADS  Google Scholar 

  12. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, Phys. Rev. Lett., 68, 923 (1992).

    Article  ADS  Google Scholar 

  13. A. Ferrando, M. Zacares. P. F. de Cordoba, et al., Opt. Express, 11, 452 (2003).

    Article  ADS  Google Scholar 

  14. C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett., 92, 2 (2004).

    Google Scholar 

  15. Y. V. Kartashov, B. A. Malomed, and L. Torner, Rev. Mod. Phys., 83, 247 (2011).

    Article  ADS  Google Scholar 

  16. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett., 25, 25 (2000).

    Article  ADS  Google Scholar 

  17. D. V. Skryabin and A. V. Gorbach, Rev. Mod. Phys., 82, 1287 (2010).

    Article  ADS  Google Scholar 

  18. D. Krokel, N. J. Halas, G. Giuliani, and D. Grischkowsky, Phys. Rev. Lett., 60, 29 (1988).

    Article  ADS  Google Scholar 

  19. A. M.Weiner, J. P. Heritage, R. J. Hawkins, et al., Phys. Rev. Lett., 61, 2445 (1988).

    Article  ADS  Google Scholar 

  20. F. Kh. Abdullaev, A. Gammal, A. M. Kamchatnov, and L. Tomio, Int. J. Mod. Phys. B, 19, 3415 (2005).

    Article  ADS  Google Scholar 

  21. R. Carretero-Gonzalez, D. J. Frantzeskakis, and P. G. Kevrekidis, Nonlinearity, 21, R139 (2008).

    Article  ADS  Google Scholar 

  22. D. J. Frantzeskakis, J. Phys. A: Math. Theor., 43, 213001 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  23. N. Akhmediev and A. Ankiewicz, Opt. Commun., 100, 186 (1993).

    Article  ADS  Google Scholar 

  24. X. F. Zhang, X. H. Hu, X. X. Liu, and W. M. Liu, Phys. Rev. A, 79, 033630 (2009).

    Article  ADS  Google Scholar 

  25. L. C. Zhao, G. G. Xin, and Z. Y. Yang, J. Opt. Soc. Am. B, 34, 2569 (2017).

    Article  ADS  Google Scholar 

  26. J. L. Helm, S. L. Cornish, and S. A. Gardiner, Phys. Rev. Lett., 114, 134101 (2015).

    Article  ADS  Google Scholar 

  27. L. C. Zhao, L. M. Ling, Z. Y. Yang, and J. Liu, Nonlin. Dyn., 83, 659 (2016).

    Article  Google Scholar 

  28. J. Polo and V. Ahufinger, Phys. Rev. A, 88, 053628 (2013).

    Article  ADS  Google Scholar 

  29. S. De Nicola, R. Fedele, M. A. Man’ko, and V. I. Man’ko, J. Opt. B: Quantum Semiclass. Opt., 5, 95 (2003).

    Article  ADS  Google Scholar 

  30. S. De Nicola, R. Fedele, M. A. Man’ko, and V. I. Man’ko, J. Russ. Laser Res., 25, 1 (2004).

    Article  Google Scholar 

  31. S. De Nicola, R. Fedele, M. A. Man’ko, et al., J. Russ, Laser Res., 31, 139 (2010).

    Article  Google Scholar 

  32. Z. Sobirov, D. Matrasulov, K. Sabirov, et al., Phys. Rev. E, 81, 066602 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  33. Z. Sobirov, D. Matrasulov, S. Sawada, and K. Nakamura, Phys. Rev. E, 84, 026609 (2011).

    Article  ADS  Google Scholar 

  34. N. Prathapa, S. Arunprakasha, M. S. M. Rajan, and M. Tantawyc, Optik, 192, 162906 (2019).

    Article  ADS  Google Scholar 

  35. H. I. Abdel-Gawad, A. Biswas, A. S. Alshomrani, and M. R. Belic, Res. Phys., 15, 102707 (2019).

    Google Scholar 

  36. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press (1997).

  37. K. Ali, M. Ullah, B. A. Bacha, and M. S. A. Jabar, Eur. Phys. J. Plus, 134, 618 (2019).

    Article  Google Scholar 

  38. U. Wahid, A. Khan, B. Bacha, and A. Ullah, Optik, 202, 163651 (2020).

    Article  ADS  Google Scholar 

  39. L. Khan, B. A. Bacha, U. Wahid, and A. Ullah, Phys. Scr., 95, 7 (2020).

    Google Scholar 

  40. B. A. Bacha, T. Khan, N. Khan, et al., Eur. Phys. J. Plus, 133, 509 (2018).

    Article  Google Scholar 

  41. F. Ullah, U. Wahid, B. Bacha, and A. Ullah, Laser Phys., 30, 095203 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bakht Amin Bacha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Bacha, B.A., Wahid, U. et al. Gaussian Pulse Propagation via Bright and Dark Solitons through an Atomic Medium. J Russ Laser Res 42, 117–125 (2021). https://doi.org/10.1007/s10946-021-09940-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-021-09940-x

Keywords

Navigation