Skip to main content
Log in

Model Predictive Control for a Linear Parameter Varying Model of an UAV

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a Model Predictive Control (MPC) based autopilot for a fixed-wing Unmanned Aircraft Vehicle (UAV) for meteorological data sampling tasks, named Aerosonde. Aerosonde missions are featured by predetermined operating conditions, allowing the design of ad-hoc controllers for each control task by using the future knowledge of the reference signals driving the aircraft during operations. To develop the controller, the nonlinear dynamics of the vehicle has been described by a Linear Parameter-Varying (LPV) model identified from the plant data by using a subspace identification technique. The LPV model is used to design a MPC to drive the UAV. Two different Linear Parameter-Varying MPC (MPCLPV) algorithms have been proposed by introducing the previewing technique in the controller due to the a priori knowledge of full reference signals. In the design of the inner Attitude Controller (AC), a future LPV scheduling parameters estimation policy has been introduced (PF −MPCLPV) for improving the control results of the standard Previewing MPCLPV (P-MPCLPV). Furthermore, an anticipative switching approach (PS −MPCS) has been considered for the altitude External Controller (EC) to improve the control performances of the standard previewing switching MPC (P-MPCS). Both PF −MPCLPV and PS −MPCS algorithms have been compared to the P-MPCLPV and P-MPCS baseline algorithms, showing the effectiveness of proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winnefeld, J.A., Kendall, F.: Unmanned systems integrated roadmap fy 2011-2036. Office of the Secretary of Defense, US (2011)

  2. Holland, G.J., Webster, P.J., Curry, J.A., Tyrell, G., Gauntlett, D., Brett, G., Becker, J., Hoag, R., Vaglienti, W.: The aerosonde robotic aircraft: A new paradigm for environmental observations. Bull. Am. Meteorol. Soc. 82(5), 889–901 (2001). https://doi.org/10.1175/1520-0477(2001)082<0889:taraan>2.3.co;2

    Article  Google Scholar 

  3. Peters, M., Konyak, M.A.: The engineering analysis and design of the aircraft dynamics model for the faa target generation facility. Seagull Technology, Inc., Los Gatos, CA, pp. 43–45 (2003)

  4. Vilaplana, M.A., Gallo, E., Navarro, F.A., Swierstra, S.: Towards a formal language for the common description of aircraft intent. In: 24th Digital Avionics Systems Conference, Vol. 1, pp. 3–C. IEEE (2005)

  5. Lopez-Leones, J., Vilaplana, M.A., Gallo, E., Navarro, F.A., Querejeta, C.: The aircraft intent description language: A key enabler for air-ground synchronization in trajectory-based operations. In: 2007 IEEE/AIAA 26th Digital Avionics Systems Conference. IEEE (2007)

  6. Konyak, M., Warburton, D., Lopez-Leones, J., Parks, P.: A demonstration of an aircraft intent interchange specification for facilitating trajectory-based operations in the national airspace system. In: AIAA guidance, navigation and control conference and exhibit. American institute of aeronautics and astronautics (2008)

  7. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. Journal of Field Robotics 29(2), 315–378 (2012). https://doi.org/10.1002/rob.20414

    Article  Google Scholar 

  8. Sudha, G., Deepa, S.N.: Optimization for PID control parameters on pitch control of aircraft dynamics based on tuning methods. Applied Mathematics & Information Sciences 10(1), 343–350 (2016). https://doi.org/10.18576/amis/100136

    Article  Google Scholar 

  9. Alexis, K., Papachristos, C., Siegwart, R., Tzes, A.: Robust model predictive flight control of unmanned rotorcrafts. Journal of Intelligent & Robotic Systems 81(3-4), 443–469 (2015). https://doi.org/10.1007/s10846-015-0238-7

    Article  Google Scholar 

  10. Cai, G., Dias, J., Seneviratne, L.: A survey of small-scale unmanned aerial vehicles: Recent advances and future development trends. Unmanned Systems 02(02), 175–199 (2014). https://doi.org/10.1142/s2301385014300017

    Article  Google Scholar 

  11. Bhandari, S., Patel, N.: Nonlinear adaptive control of a fixed-wing UAV using multilayer perceptrons. In: AIAA guidance, navigation, and control conference. American institute of aeronautics and astronautics (2017)

  12. Fan, W., Liu, H.H.T., Kwong, R.H.S.: Gain-scheduling control of flexible aircraft with actuator saturation and stuck faults. J. Guid. Control. Dyn. 40(3), 510–520 (2017). https://doi.org/10.2514/1.g002222

    Article  Google Scholar 

  13. Pisaturo, M., Cirrincione, M., Senatore, A.: Multiple constrained MPC design for automotive dry clutch engagement. IEEE/ASME Transactions on Mechatronics 20(1), 469–480 (2015)

    Article  Google Scholar 

  14. Cavanini, L., Cimini, G., Ippoliti, G., Bemporad, A.: Model predictive control for pre-compensated voltage mode controlled DC-DC converters. IET Control Theory & Applications. https://doi.org/10.1049/iet-cta.2016.1501(2017)

  15. Cavanini, L., Cimini, G., Ippoliti, G.: Model predictive control for the reference regulation of current mode controlled DC-DC converters. In: 2016 IEEE 14th international conference on industrial informatics (INDIN). IEEE (2016)

  16. Cavanini, L., Corradini, M.L., Ippoliti, G., Orlando, G.: A model predictive control for a multi-axis piezo system: Development and experimental validation. In: Control, decision and information technologies (CoDIT), 2017 4th International Conference on, pp. 0067–0072. IEEE (2017)

  17. Cavanini, L., Colombo, L., Ippoliti, G., Orlando, G.: Development and experimental validation of a lqg control for a pre-compensated multi-axis piezosystem. In: Industrial Electronics (ISIE), 2017 IEEE 26th International Symposium on, pp. 460–465. IEEE (2017)

  18. Cavanini, L., Cimini, G., Ippoliti, G.: Computationally efficient model predictive control for a class of linear parameter-varying systems. IET Control Theory & Applications 12(10), 1384–1392 (2018)

    Article  MathSciNet  Google Scholar 

  19. Alexis, K., Nikolakopoulos, G., Tzes, A.: Model predictive quadrotor control: attitude, altitude and position experimental studies. IET Control Theory & Applications 6(12), 1812–1827 (2012)

    Article  MathSciNet  Google Scholar 

  20. Hu, X., Karimi, H.R., Wu, L., Guo, Y.: Model predictive control-based non-linear fault tolerant control for air-breathing hypersonic vehicles. IET Control Theory & Applications 8(13), 1147–1153 (2014)

    Article  Google Scholar 

  21. Tang, W., Long, W., Gao, H.: Model predictive control of hypersonic vehicles accommodating constraints. IET Control Theory & Applications 11(15), 2599–2606 (2017)

    Article  MathSciNet  Google Scholar 

  22. Mayne, D.Q.: Model predictive control: Recent developments and future promise. Automatica 50(12), 2967–2986 (2014)

    Article  MathSciNet  Google Scholar 

  23. Wan, Z., Kothare, M.V.: Efficient scheduled stabilizing model predictive control for constrained nonlinear systems. International Journal of Robust and Nonlinear Control 13(3-4), 331–346 (2003). https://doi.org/10.1002/rnc.821

    Article  MathSciNet  MATH  Google Scholar 

  24. Shamma, J.S., Athans, M.: Analysis of gain scheduled control for nonlinear plants. IEEE Transactions on Automatic Control 35(8), 898–907 (1990). https://doi.org/10.1109/9.58498

    Article  MathSciNet  MATH  Google Scholar 

  25. Abbas, H.S., Toth, R., Meskin, N., Mohammadpour, J., Hanema, J.: A robust MPC for input-output LPV models. IEEE Transactions on Automatic Control 61(12), 4183–4188 (2016). https://doi.org/10.1109/tac.2016.2553143

    Article  MathSciNet  MATH  Google Scholar 

  26. Dughman, S.S., Rossiter, J.A.: Efficient robust feed forward model predictive control with tracking. In: 2016 UKACC 11th international conference on control (CONTROL). IEEE (2016)

  27. Hanema, J., Toth, R., Lazar, M.: Tube-based anticipative model predictive control for linear parameter-varying systems. In: 2016 IEEE 55th conference on decision and control (CDC). IEEE (2016)

  28. van Wingerden, J-W, Verhaegen, M.: Subspace identification of bilinear and LPV systems for open- and closed-loop data. Automatica 45(2), 372–381 (2009). https://doi.org/10.1016/j.automatica.2008.08.015

    Article  MathSciNet  MATH  Google Scholar 

  29. Cavanini, L., Ferracuti, F., Longhi, S., Marchegiani, E., Monteriù, A: Sparse approximation of ls-svm for lpv-arx model identification: Application to a powertrain subsystem. In: 2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), pp. 1–6. IEEE (2020)

  30. Gong, L., Wang, Q., Dong, C., Zhong, K.: Prescribed performance control of morphing aircraft based on switched nonlinear systems and reinforcement learning. Measurement and Control 52(5-6), 608–624 (2019)

    Article  Google Scholar 

  31. Cavanini, L., Ferracuti, F., Longhi, S., Monteriù, A: Ls-svm for lpv-arx identification: Efficient online update by low-rank matrix approximation. In: 2020 International conference on unmanned aircraft systems (ICUAS), pp. 1590–1595. IEEE (2020)

  32. Brunton, S.L., Kutz, J.N.: Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  33. Audren, H., Vaillant, J., Kheddar, A., Escande, A., Kaneko, K., Yoshida, E.: Model preview control in multi-contact motion-application to a humanoid robot. In: 2014 IEEE/RSJ international conference on intelligent robots and systems. IEEE (2014)

  34. Borrelli, F., Bemporad, A., Morari, M.: Predictive control for linear and hybrid systems. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  35. Abbas, H.S., Tóth, R, Meskin, N., Mohammadpour, J., Hanema, J.: An mpc approach for lpv systems in input-output form. In: Decision and control (CDC), 2015 IEEE 54th Annual conference on, pp. 91–96. IEEE (2015)

  36. Cavanini, L., Cimini, G., Ippoliti, G.: A fast model predictive control algorithm for linear parameter varying systems with right invertible input matrix. In: 2017 25th Mediterranean Conference on Control and Automation (MED). IEEE (2017)

  37. Cimini, G., Bernardini, D., Levijoki, S., Bemporad, A.: Embedded model predictive control with certified real-time optimization for synchronous motors. IEEE Trans. Control Syst. Technol. (2020)

  38. Zheng, P., Li, D., Xi, Y., Zhang, J.: Improved future model prediction and robust MPC design for LPV systems with bounded rates of parameter variations. In: 2013 9th Asian control conference (ASCC). IEEE (2013)

  39. Suzukia, H., Sugie, T.: MPC for LPV systems with bounded parameter variation using ellipsoidal set prediction. In: 2006 American control conference. IEEE (2006)

  40. Hanema, J., Lazar, M., Tóth, R: Heterogeneously parameterized tube model predictive control for lpv systems. Automatica 111, 108622 (2020)

    Article  MathSciNet  Google Scholar 

  41. Morato, M.M., Normey-Rico, J.E., Sename, O.: Model predictive control design for linear parameter varying systems: A survey. Annu. Rev. Control. (2020)

  42. Zhao, M., Wen, Y., Wang, Y., Chen, Z.: Lpv based robust mpc for a multi-vectored airship. In: 2017 Eighth international conference on intelligent control and information processing (ICICIP), pp. 314–318. IEEE (2017)

  43. Mate, S., Kodamana, H., Bhartiya, S., Nataraj, P.S.V.: A stabilizing sub-optimal model predictive control for quasi-linear parameter varying systems. IEEE Control Systems Letters 4(2), 402–407 (2019)

    Article  MathSciNet  Google Scholar 

  44. Magni, L., Scattolini, R., Tanelli, M.: Switched model predictive control for performance enhancement. Int. J. Control. 81(12), 1859–1869 (2008)

    Article  MathSciNet  Google Scholar 

  45. Cairano, S.D., Tseng, H.E., Bernardini, D., Bemporad, A.: Steering vehicle control by switched model predictive control. IFAC Proceedings Volumes 43(7), 1–6 (2010)

    Article  Google Scholar 

  46. Cimini, G., Bemporad, A.: Complexity and convergence certification of a block principal pivoting method for box-constrained quadratic programs. Automatica 100, 29–37 (2019)

    Article  MathSciNet  Google Scholar 

  47. Verdejo, J.R., Bemporad, A., Bernardini, D., Long, R., Chen, J.-S.: Estimation systems and methods with model predictive control. Google Patents. US Patent 9,541,019 (2017)

  48. Caseiro, L.M.A., Mendes, A.M.S., Cruz, S.M.A.: Dynamically weighted optimal switching vector model predictive control of power converters. IEEE Trans. Ind. Electron. 66(2), 1235–1245 (2018)

    Article  Google Scholar 

  49. Ltd, A.P., Aerosonde. www.aerosonde.com

  50. Dynamics, U.: Aerosim toolbox. www.u-dynamics.com available: (July) (2009)

  51. Bateman, F., Noura, H., Ouladsine, M.: Fault diagnosis and fault-tolerant control strategy for the aerosonde UAV. IEEE Transactions on Aerospace and Electronic Systems 47(3), 2119–2137 (2011)

    Article  Google Scholar 

  52. Tennakoon, W.T.M.S., Munasinghe, S.R.: Design and simulation of a uav controller system with high maneuverability. In: 2008 4th International conference on information and automation for sustainability, pp. 431–436. IEEE (2008)

  53. Seyedtabaii, S., Zaker, S.: Lateral control of an aerosonde facing tolerance in parameters and operation speed: performance robustness study. Trans. Inst. Meas. Control. 41(8), 2319–2327 (2019)

    Article  Google Scholar 

  54. Mi, X., Zou, Y., Li, S., Karimi, H.R.: Self-triggered dmpc design for cooperative multiagent systems. IEEE Trans. Ind. Electron. 67(1), 512–520 (2019)

    Article  Google Scholar 

  55. Yang, R., Yu, Y., Sun, J., Karimi, H.R.: Event-based networked predictive control for networked control systems subject to two-channel delays. Inform. Sci. (2020)

  56. Takahashi, Y., Hidaka, K.: Model predictive control for hybrid electric vehicles with linear parameter-varying model. In: 2018 18th International conference on control, automation and systems (ICCAS), pp. 1501–1506. IEEE (2018)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Luca Cavanini, Gianluca Ippoliti and Eduardo F. Camacho. The first draft of the manuscript was written by Luca Cavanini and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gianluca Ippoliti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: UAV Nonlinear Model and Parameters

Appendix A: UAV Nonlinear Model and Parameters

$$ \begin{array}{@{}rcl@{}} &&V_{a}=\| V_{b}-W_{b} \|_{2} \end{array} $$
(26)
$$ \begin{array}{@{}rcl@{}} &&\alpha=\arctan(\frac{w}{u}) \end{array} $$
(27)
$$ \begin{array}{@{}rcl@{}} &&\beta=\arcsin(\frac{v}{V_{a}}) \end{array} $$
(28)
$$ \begin{array}{@{}rcl@{}} &&\dot \alpha=\frac{d \alpha}{dt} \end{array} $$
(29)
$$ \begin{array}{@{}rcl@{}} &&\dot \beta=\frac{d \beta}{dt} \end{array} $$
(30)
$$ \begin{array}{@{}rcl@{}} &&p_{cd}=0.5\rho {V_{a}^{2}} \end{array} $$
(31)
$$ \begin{array}{@{}rcl@{}} &&M=\frac{V_{a}}{a} \end{array} $$
(32)
$$ \begin{array}{@{}rcl@{}} &&C_{L}=C_{L0}+C_{L}^{\alpha}\alpha+C_{L}^{\delta_{f} }\delta_{f}+C_{L}^{\delta_{e}}\delta_{e}+\frac{c}{2V_{a}}\left( C_{L}^{\dot\alpha}\dot\alpha+{C_{L}^{q}} q\right)+{C_{L}^{M}} M \end{array} $$
(33)
$$ \begin{array}{@{}rcl@{}} &&C_{D}=C_{D0}+\frac{(C_{L0}-C_{L})^{2}}{\pi e \frac{b^{2}}{S}}+C_{D}^{\delta_{f} }\delta_{f}+C_{D}^{\delta_{e}}\delta_{e}+C_{D}^{\delta_{a}}\delta_{a}+C_{D}^{\delta_{r}}\delta_{r}+{C_{D}^{M}} M \end{array} $$
(34)
$$ \begin{array}{@{}rcl@{}} &&C_{Y}=C_{Y}^{\beta} \beta+C_{Y}^{\delta_{a}}\delta_{a}+C_{Y}^{\delta_{r}}\delta_{r}+\frac{b}{2V_{a}}({C_{Y}^{p}} p+{C_{Y}^{r}} r) \end{array} $$
(35)
$$ \begin{array}{@{}rcl@{}} &&C_{m}=C_{m0}+C_{m}^{\alpha} \alpha+C_{m}^{\delta_{f} }\delta_{f}+C_{m}^{\delta_{e}}\delta_{e}+\frac{c}{2V_{a}}(C_{m}^{\dot \alpha}\dot \alpha+{C_{m}^{q}} q)+{C_{m}^{M}} M\end{array} $$
(36)
$$ \begin{array}{@{}rcl@{}} &&C_{l}=C_{l}^{\beta} \beta+ C_{l}^{\delta_{a}} \delta_{a}+C_{l}^{\delta_{r}} \delta_{r}+\frac{b}{2V_{a}}({C_{l}^{p}} p+{C_{l}^{r}} r) \end{array} $$
(37)
$$ \begin{array}{@{}rcl@{}} &&C_{n}=C_{n}^{\beta} \beta+ C_{n}^{\delta_{a}} \delta_{a}+C_{n}^{\delta_{r}} \delta_{r}+\frac{b}{2V_{a}}({C_{n}^{p}} p+{C_{n}^{r}} r) \end{array} $$
(38)
$$ \begin{array}{@{}rcl@{}} &&F_{D}=0.5\rho {V_{a}^{2}} S C_{D} \end{array} $$
(39)
$$ \begin{array}{@{}rcl@{}} &&F_{Y}=0.5\rho {V_{a}^{2}} S C_{Y} \end{array} $$
(40)
$$ \begin{array}{@{}rcl@{}} &&F_{L}=0.5\rho {V_{a}^{2}} S C_{L} \end{array} $$
(41)
$$ \begin{array}{@{}rcl@{}} &&M_{l}=0.5\rho {V_{a}^{2}} S C_{l} \end{array} $$
(42)
$$ \begin{array}{@{}rcl@{}} &&M_{m}=0.5\rho {V_{a}^{2}} S C_{m} \end{array} $$
(43)
$$ \begin{array}{@{}rcl@{}} &&M_{n}=0.5\rho {V_{a}^{2}} S C_{n} \end{array} $$
(44)
$$ \begin{array}{@{}rcl@{}} &&J=\frac{\pi V_{a}}{{\varOmega} R_{pr}} \end{array} $$
(45)
$$ \begin{array}{@{}rcl@{}} &&F_{prop}=\frac{4}{\pi^{2}}\rho R_{pr}^{4}{\varOmega}^{2}C_{T} \end{array} $$
(46)
$$ \begin{array}{@{}rcl@{}} &&M_{prop}=-\frac{4}{\pi^{3}}\rho R_{pr}^{5}{\varOmega}^{2}C_{P} \end{array} $$
(47)
$$ \begin{array}{@{}rcl@{}} &&[F_{uelFlow},T_{q},A_{f}]=f(T_{hr},p_{cd},M_{ix},{\varOmega},T) \end{array} $$
(48)
$$ \begin{array}{@{}rcl@{}} &&(I_{pr}+I_{eng})\dot {\varOmega}=M_{prop}+M_{eng} \end{array} $$
(49)
$$ \begin{array}{@{}rcl@{}} &&c_{1}-c_{9} \leftarrow [CG_{pos},M_{ass},J_{x},J_{y},J_{z},J_{xz}]=g(F_{uelFlow}) \end{array} $$
(50)
Table 7 Aircraft model parameters
Table 8 Aircraft model parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavanini, L., Ippoliti, G. & Camacho, E.F. Model Predictive Control for a Linear Parameter Varying Model of an UAV. J Intell Robot Syst 101, 57 (2021). https://doi.org/10.1007/s10846-021-01337-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01337-x

Keywords

Navigation