Skip to main content

Advertisement

Log in

Precipitable water vapor fusion based on a generalized regression neural network

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Water vapor plays an important role in Earth’s weather and climate processes and energy transfer. Plenty of techniques have developed to monitor precipitable water vapor (PWV), but joint use of different techniques has some problems, including systematic biases, different spatiotemporal coverages and resolutions among different datasets. To address the above problems and improve the data utilization, we propose to use a generalized regression neural network (GRNN) to fuse PWVs from Global Navigation Satellite System (GNSS), Moderate-Resolution Imaging Spectroradiometer (MODIS), and European Centre for Medium‐Range Weather Forecasts Reanalysis 5 (ERA5). The core idea of this method is to use the high-quality GNSS PWV to calibrate and optimize the relatively low-quality MODIS and ERA5 PWV through the constructed GRNNs. Using the proposed method, we generated more than 400 PWV maps that combine GNSS, MODIS, and ERA5 PWVs in North America in 2018. Results show that the overall bias, standard deviation (STD), and root-mean-square (RMS) error are 0.0 mm, 2.1 mm, and 2.2 mm for the improved MODIS PWV, and 0.0 mm, 1.6 mm, and 1.6 mm for the improved ERA5 PWV. Compared to the original MODIS and ERA5 PWV, the total improvements are 37.1% and 15.8% in terms of RMS. The RMS improvements are mainly contributed from the calibration of bias for the MODIS PWV and optimization for the ERA5 PWV. It also demonstrates that the original MODIS PWV tends to be greater than the GNSS PWV while the ERA5 PWV has very small biases. After calibration and optimization, the correlation coefficients between the modified PWV and the GNSS PWV are 0.96 for the MODIS PWV and 0.98 for the ERA5 PWV. The proposed method also diminishes the temporal and spatial variations in accuracy, generating homogeneous PWV products. Since the biases among the three datasets are well removed and data accuracies are improved to the same level, they are thus easily fused and jointly used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The GNSS PWV data used in this paper can be freely accessed at https://www.suominet.ucar.edu/data/pwvConusHourly/. The MODIS PWV data can be accessed at https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/. The ECMWF ERA5 PWV data can be accessed at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form. The codes associated with the spherical cap harmonic analysis are available upon request to Dr. Bao Zhang (sggzb@whu.edu.cn).

References

  • Alshawaf F, Fersch B, Hinz S, Kunstmann H, Mayer M, Meyer FJ (2015) Water vapor mapping by fusing InSAR and GNSS remote sensing data and atmospheric simulations. Hydrol Earth Syst Sci 19(12):4747–4764

    Article  Google Scholar 

  • Barindelli S, Realini E, Venuti G, Fermi A, Gatti A (2018) Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers. Earth, Planet Sp 70(1):28

    Article  Google Scholar 

  • Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res: Atmos 97(D14):15787–15801

    Article  Google Scholar 

  • Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: Mapping zenith wet delays onto precipitable water. J Appl Meteorol 33(3):379–386

    Article  Google Scholar 

  • Cadeddu MP, Liljegren JC, Pazmany AL (2007) Measurements and retrievals from a new 183-GHz water-vapor radiometer in the Arctic. IEEE Trans Geosci Remote Sens 45(7):2207–2215

    Article  Google Scholar 

  • Chen B, Liu Z (2016) Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite. J Geophys Res: Atmos 121(19):11–442

    Article  Google Scholar 

  • Cigizoglu HK, Alp M (2006) Generalized regression neural network in modelling river sediment yield. Adv Eng Softw 37(2):63–68

    Article  Google Scholar 

  • Dach, R., Hugentobler, U., Fridez, P., & Meindl, M. (2007). Bernese GPS software version 5.0. Astronomical Institute, University of Bern, 640, 114.

  • Dou SB, Song SL, Zhou WL, Liu ZM, Chen QM, Zheng WM, Chen HC (2018) Study on the water vapor radiometer calibration with GPS data. AcASn 59(6):53

    Google Scholar 

  • Gao B (2015) MODIS Atmosphere L2 Water Vapor Product. NASA MODIS Adapt Proc Syst, Goddard Sp Fl Center, USA,. https://doi.org/10.5067/MODIS/MOD05_L2.006

    Article  Google Scholar 

  • Gao BC, Kaufman YJ (1998) The MODIS near-IR water vapor algorithm. Algorithm Theoretical Basis Document, ATBD-MOD, p 5

    Google Scholar 

  • Gao BC, Kaufman YJ (2003) Water vapor retrievals using moderate resolution imaging Spectroradiometer MODIS near-infrared channels. J Geophys Res Atmos. https://doi.org/10.1029/2002JD003023

    Article  Google Scholar 

  • Gui K, Che H, Chen Q, Zeng Z, Liu H, Wang Y, Zhang X (2017) Evaluation of radiosonde, MODIS-NIR-clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmos Res 197:461–473

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Simmons A (2020) The ERA5 global reanalysis. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • He J, Liu Z (2019) Comparison of Satellite-derived precipitable water vapor through Near-infrared remote sensing channels. IEEE Trans Geosci Remote Sens 57(12):10252–10262

    Article  Google Scholar 

  • He J, Liu Z (2020) Refining MODIS NIR atmospheric water vapor retrieval algorithm using GPS-derived water vapor data. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2020.3016655

    Article  Google Scholar 

  • Jarvis, A., Reuter, H. I., Nelson, A., Guevara, E. (2008) Hole-filled seamless SRTM data V4, international centre for tropical agriculture (CIAT), available from http://srtm.csi.cgiar.org.

  • Jiang P, Ye S, Chen D, Liu Y, Xia P (2016) Retrieving precipitable water vapor data using GPS zenith delays and global reanalysis data in China. Remote Sens 8(5):389

    Article  Google Scholar 

  • Kaufman YJ, Gao BC (1992) Remote sensing of water vapor in the near IR from EOS/MODIS. IEEE Trans Geosci Remote Sens 30(5):871–884

    Article  Google Scholar 

  • Kim B, Lee DW, Park KY, Choi SR, Choi S (2004) Prediction of plasma etching using a randomized generalized regression neural network. Vacuum 76(1):37–43

    Article  Google Scholar 

  • King MD, Menzel WP, Kaufman YJ, Tanré D, Gao BC, Platnick S, Hubanks PA (2003) Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans Geosci Remote Sens 41(2):442–458

    Article  Google Scholar 

  • Lindenbergh, R., Van der Marel, H., Keshin, M., & De Haan, S. (2009). Validating time series of a combined GPS and MERIS Integrated Water Vapor product. In Proceedings 2nd MERIS/(A) ATSR User Workshop, September 22–26, 2008 ESA/ESRIN Frascati (Rome), 2009 (NB: small correction applied wrt Proceedings version)

  • Li Z, Muller JP, Cross P (2003) Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-resolution imaging spectroradiometer measurements. J Geophy Res Atmos. https://doi.org/10.1029/2003JD003372

    Article  Google Scholar 

  • Li, Z. (2004). Production of regional 1 km x 1 km water vapor fields through the integration of GPS and MODIS data. Online available at http://eprints.gla.ac.uk/48158/

  • Li T, Shen H, Yuan Q, Zhang X, Zhang L (2017a) Estimating ground-level PM25 by fusing satellite and station observations: a geo-intelligent deep learning approach. Geophys Res Lett 44(23):11–985

    Google Scholar 

  • Li T, Shen H, Zeng C, Yuan Q, Zhang L (2017b) Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: methods and assessment. Atmos Environ 152:477–489

    Article  Google Scholar 

  • Liu J, Sun Z, Liang H, Xu X, Wu P (2005) Precipitable water vapor on the Tibetan Plateau estimated by GPS, water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on the radiation budget. J Geophys Res Atmos. https://doi.org/10.1029/2004JD005715

    Article  Google Scholar 

  • Liu Z, Wong MS, Nichol J, Chan PW (2013) A multi-sensor study of water vapour from radiosonde, MODIS and AERONET: a case study of Hong Kong. Int J Climatol 33(1):109–120

    Article  Google Scholar 

  • Miloshevich LM, Vömel H, Whiteman DN, Leblanc T (2009) Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J Geophys Res Atmos. https://doi.org/10.1029/2008JD011565

    Article  Google Scholar 

  • Ralph FM, Iacobellis SF, Neiman PJ, Cordeira JM, Spackman JR, Waliser DE, Fairall C (2017) Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. J Hydrometeorol 18(9):2577–2596

    Article  Google Scholar 

  • Ren H, Du C, Liu R, Qin Q, Yan G, Li ZL, Meng J (2015) Atmospheric water vapor retrieval from Landsat 8 thermal infrared images. J Geophys Res: Atmos 120(5):1723–1738

    Article  Google Scholar 

  • Reuter HI, Nelson A, Jarvis A (2007) An evaluation of void-filling interpolation methods for SRTM data. Int J Geogr Inform Sci 21(9):983–1008

    Article  Google Scholar 

  • Rinke A, Segger B, Crewell S, Maturilli M, Naakka T, Nygård T, Keller J (2019) Trends of vertically integrated water vapor over the arctic during 1979–2016: consistent moistening all over? J Clim 32(18):6097–6116

    Article  Google Scholar 

  • Rocken C, Ware R, Van Hove T, Solheim F, Alber C, Johnson J, Businger S (1993) Sensing atmospheric water vapor with the Global Positioning System. Geophys Res Lett 20(23):2631–2634

    Article  Google Scholar 

  • Rocken C, Van Hove T, Ware R (1997) Near real-time GPS sensing of atmospheric water vapor. Geophysical research letters 24(24):3221–3224

    Article  Google Scholar 

  • Rodriguez JD, Perez A, Lozano JA (2009) Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Tran Pattern Anal Mach Intell 32(3):569–575

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Artif Satell Geod 15:247–251

    Google Scholar 

  • Sherwood SC, Roca R, Weckwerth TM, Andronova NG (2010) Tropospheric water vapor, convection, and climate. Rev Geophys. https://doi.org/10.1029/2009RG000301

    Article  Google Scholar 

  • Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2(6):568–576

    Article  Google Scholar 

  • Teke K, Nilsson T, Böhm J, Hobiger T, Steigenberger P, García-Espada S, Willis P (2013) Troposphere delays from space geodetic techniques, water vapor radiometers, and numerical weather models over a series of continuous VLBI campaigns. J Geod 87(10–12):981–1001

    Article  Google Scholar 

  • Wang J, Dai A, Mears C (2016) Global water vapor trend from 1988 to 2011 and its diurnal asymmetry based on GPS, radiosonde, and microwave satellite measurements. J Clim 29(14):5205–5222

    Article  Google Scholar 

  • Wang J, Wu Z, Semmling M, Zus F, Gerland S, Ramatschi M, Schuh H (2019) Retrieving precipitable water vapor from shipborne multi-GNSS observations. Geophys Res Lett 46(9):5000–5008

    Article  Google Scholar 

  • Ware RH, Fulker DW, Stein SA, Anderson DN, Avery SK, Clark RD, Sorooshian S (2000) SuomiNet: A real-time national GPS network for atmospheric research and education. Bull Am Meteorol Soc 81(4):677–694

    Article  Google Scholar 

  • Xu H, Yuan Q, Li T, Shen H, Zhang L, Jiang H (2018) Quality improvement of satellite soil moisture products by fusing with in-situ measurements and GNSS-R estimates in the western continental US. Remote Sens 10(9):1351

    Article  Google Scholar 

  • Yuan Q, Li S, Yue L, Li T, Shen H, Zhang L (2019) Monitoring the variation of vegetation water content with machine learning methods: point-surface fusion of MODIS products and GNSS-IR observations. Remote Sens 11(12):1440

    Article  Google Scholar 

  • Yuan Q, Xu H, Li T, Shen H, Zhang L (2020) Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental US. J Hydrol 580:124351

    Article  Google Scholar 

  • Zhang Y, Cai C, Chen B, Dai W (2019a) Consistency evaluation of precipitable water vapor derived from ERA5, ERA-Interim, GNSS, and radiosondes over China. Radio Sci 54(7):561–571

    Google Scholar 

  • Zhang B, Yao Y, Xin L, Xu X (2019b) Precipitable water vapor fusion: an approach based on spherical cap harmonic analysis and Helmert variance component estimation. J Geod 93(12):2605–2620

    Article  Google Scholar 

Download references

Acknowledgements

We thank University Corporation for Atmospheric Research (UCAR) for providing the GNSS PWV data and National Aeronautics and Space Administration (NASA) for providing the MODIS PWV products and the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing the ERA5 reanalysis data. This work is jointly supported by the National Natural Science Foundation of China (41704004; 42074035), the Fundamental Research Funds for the Central Universities (2042020kf0009), and the China Postdoctoral Science Foundation (2018M630880; 2019T120687). This work is also partially supported by Key Technology Projects in Transportation Industry (2019-MS1-013) and the Department of Transportation of Zhejiang Province (2019-GCKY-02).

Author information

Authors and Affiliations

Authors

Contributions

BZ and YY together designed the research and proposed the solutions. BZ performed the research and wrote the paper. YY provided valuable suggestions.

Corresponding author

Correspondence to Yibin Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Yao, Y. Precipitable water vapor fusion based on a generalized regression neural network. J Geod 95, 36 (2021). https://doi.org/10.1007/s00190-021-01482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-021-01482-z

Keywords

Navigation