Skip to main content
Log in

Proteoglycan Remodeling Is Accelerated in Females with Angina Pectoris and Diffuse Myocardial Fibrosis: the iPOWER Study

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Angina and no obstructive coronary artery disease (CAD) have an unfavorable prognosis, possibly due to diffuse myocardial fibrosis (DMF). In DMF the proteoglycans biglycan and versican are actively remodeled by matrix metalloproteinase. We investigated biglycan and versican in females with angina and possible DMF assessed by cardiac magnetic resonance (CMR). Seventy-one females with angina and no obstructive CAD were included. Asymptomatic females served as controls. Versican and biglycan were measured and CMR was performed measuring extracellular volume. Biglycan and versican levels were higher in symptomatic females compared with controls; 31.4 ng/mL vs. 16.4 ng/mL (p < 0.001) and 2.1 ng/mL vs. 1.8 ng/mL (p < 0.001) and moderately correlated to extracellular volume (r2 = 0.38, p<0.001 and r2 = 0.26, p = 0.015). Turnover of biglycan and versican was increased in angina females compared with controls and associated with extracellular volume, supporting a link between angina with no obstructive CAD and fibrotic remodeling.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BGM:

Biglycan

CAD:

Coronary artery disease

CAG:

Coronary angiography

CMD:

Coronary microvascular dysfunction

CMR:

Cardiac magnetic resonance

DMF:

Diffuse myocardial fibrosis

ECM:

Extracellular matrix

ELISA:

Enzyme-linked immunosorbent assays

iPOWER:

ImProve diagnOsis and treatment of Women with angina pEctoris and micRovessel disease

MOLLI:

Modified look-locker inversion recovery technique

NRI:

Net reclassification improvement

VCANM:

Versican

References

  1. Jespersen, L., Hvelplund, A., Abildstrøm, S. Z., Pedersen, F., Galatius, S., Madsen., J. K., et al. (2012). Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. European Heart Journal, 33(6), 734–744 Available from: http://www.ncbi.nlm.nih.gov/pubmed/21911339.

    Article  Google Scholar 

  2. Jespersen, L., Abildstrøm, S. Z., Hvelplund, A., & Prescott, E. (2013). Persistent angina: highly prevalent and associated with long-term anxiety, depression, low physical functioning, and quality of life in stable angina pectoris. Clinical Research in Cardiology, 102(8), 571–581 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23636227.

    Article  Google Scholar 

  3. Murthy, V. L., Naya, M., Taqueti, V. R., Foster, C. R., Gaber, M., Hainer, J., et al. (2014). Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation, 129(24), 2518–2527 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24787469.

    Article  Google Scholar 

  4. Sicari, R., Rigo, F., Cortigiani, L., Gherardi, S., Galderisi, M., & Picano, E. (2009). Additive prognostic value of coronary flow reserve in patients with chest pain syndrome and normal or near-normal coronary arteries. American Journal of Cardiology, 103(5), 626–631 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19231324.

    Article  Google Scholar 

  5. Reis, S. E., Holubkov, R., Smith, A. J. C., Kelsey, S. F., Sharaf, B. L., Reichek, N., et al. (2001). Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: Results from the NHLBI WISE study. American Heart Journal, 141(5), 735–741.

    Article  CAS  Google Scholar 

  6. Brainin, P., Frestad, D., & Prescott, E. (2018). The prognostic value of coronary endothelial and microvascular dysfunction in subjects with normal or non-obstructive coronary artery disease: A systematic review and meta-analysis. International Journal of Cardiology, 254, 1–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29407076.

    Article  Google Scholar 

  7. Michelsen, M. M., Pena, A., Mygind, N. D., Høst, N., Gustafsson, I., Hansen, P. R., et al. (2019). Overlap between angina without obstructive coronary artery disease and left ventricular diastolic dysfunction with preserved ejection fraction. PLoS One, 14(5), e0216240 Available from: http://www.ncbi.nlm.nih.gov/pubmed/31120897.

    Article  CAS  Google Scholar 

  8. Järveläinen, H., Sainio, A., Koulu, M., Wight, T. N., & Penttinen, R. (2009). Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacological Review, 61(2), 198–223 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19549927.

    Article  Google Scholar 

  9. Schaefer, L., & Schaefer, R. M. (2010). Proteoglycans: from structural compounds to signaling molecules. Cell and Tissue Research, 339(1), 237–246 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19513755.

    Article  CAS  Google Scholar 

  10. Schaefer, L., Babelova, A., Kiss, E., Hausser, H.-J., Baliova, M., Krzyzankova, M., et al. (2005). The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. Journal of Clinical Investigation, 115(8), 2223–2233 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16025156.

    Article  CAS  Google Scholar 

  11. Beetz, N., Rommel, C., Schnick, T., Neumann, E., Lother, A., Monroy-Ordonez, E. B., et al. (2016). Ablation of biglycan attenuates cardiac hypertrophy and fibrosis after left ventricular pressure overload. Journal of Molecular and Cellular Cardiology, 101, 145–155 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27789290.

    Article  CAS  Google Scholar 

  12. Iozzo, R. V., & Karamanos, N. (2010). Proteoglycans in health and disease: emerging concepts and future directions. FEBS Journal, 277(19), 3863 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20812984.

    Article  CAS  Google Scholar 

  13. Kern, C. B., Wessels, A., McGarity, J., Dixon, L. J., Alston, E., Argraves, W. S., et al. (2010). Reduced versican cleavage due to Adamts9 haploinsufficiency is associated with cardiac and aortic anomalies. Matrix Biology, 29(4), 304–316 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20096780.

    Article  CAS  Google Scholar 

  14. Wight, T. N. (2017). Provisional matrix: A role for versican and hyaluronan. Matrix Biology, 60–61, 38–56 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27932299.

    Article  Google Scholar 

  15. Toeda, K., Nakamura, K., Hirohata, S., Hatipoglu, O. F., Demircan, K., Yamawaki, H., et al. (2005). Versican is induced in infiltrating monocytes in myocardial infarction. Molecular and Cellular Biochemistry, 280(1–2), 47–56 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16311904.

    Article  CAS  Google Scholar 

  16. Farb, A., Kolodgie, F. D., Hwang, J.-Y., Burke, A. P., Tefera, K., Weber, D. K., et al. (2004). Extracellular matrix changes in stented human coronary arteries. Circulation, 110(8), 940–947 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15302784.

    Article  CAS  Google Scholar 

  17. Evanko, S. P., Raines, E. W., Ross, R., Gold, L. I., & Wight, T. N. (1998). Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. American Journal of Pathology, 152(2), 533–546 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9466580.

    CAS  Google Scholar 

  18. Gupta, V., Barzilla, J. E., Mendez, J. S., Stephens, E. H., Lee, E. L., Collard, C. D., et al. Abundance and location of proteoglycans and hyaluronan within normal and myxomatous mitral valves. Cardiovascular Pathology, 18(4), 191–197 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18621549.

  19. Frangogiannis, N. G. (2017). The extracellular matrix in myocardial injury, repair, and remodeling. Journal of Clinical Investigation, 127(5), 1600–1612 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28459429.

    Article  Google Scholar 

  20. Higgins, D. M., Ridgway, J. P., Radjenovic, A., Sivananthan, U. M., & Smith, M. A. (2005). T1 measurement using a short acquisition period for quantitative cardiac applications. Medical Physics, 32(6), 1738–1746 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16013731.

    Article  Google Scholar 

  21. Moon, J. C., Messroghli, D. R., Kellman, P., Piechnik, S. K., Robson, M. D., Ugander, M., et al. (2013). Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. Journal of Cardiovascular Magnetic Resonance, 15(1), 92 Available from: http://jcmr-online.biomedcentral.com/articles/10.1186/1532-429X-15-92.

    Article  Google Scholar 

  22. Bull, S., White, S. K., Piechnik, S. K., Flett, A. S., Ferreira, V. M., Loudon, M., et al. (2013). Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart, 99(13), 932–937 Available from: http://heart.bmj.com/lookup/doi/10.1136/heartjnl-2012-303052.

    Article  Google Scholar 

  23. Flett, A. S., Hayward, M. P., Ashworth, M. T., Hansen, M. S., Taylor, A. M., Elliott, P. M., et al. (2010). Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: Preliminary validation in humans. Circulation., 122(2), 138–144.

    Article  Google Scholar 

  24. Miller, C. A., Naish, J. H., Bishop, P., Coutts, G., Clark, D., Zhao, S., et al. (2013). Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circulation Cardiovascular Imaging, 6(3), 373–383.

    Article  Google Scholar 

  25. Prescott, E., Abildstrøm, S. Z., Aziz, A., Merz, N. B., Gustafsson, I., Halcox, J., et al. (2014). Improving diagnosis and treatment of women with angina pectoris and microvascular disease: The iPOWER study design and rationale. American Heart Journal, 167(4).

  26. Schnohr, P., Jensen, G., Nyboe, J., & Eybjaerg Hansen, A. (1977). The Copenhagen City Heart Study. A prospective cardiovascular population study of 20,000 men and women. Ugeskr Laeger, 139(32), 1921–1923 Available from: http://www.ncbi.nlm.nih.gov/pubmed/906112.

    CAS  PubMed  Google Scholar 

  27. Genovese, F., Barascuk, N., Larsen, L., Larsen, M. R., Nawrocki, A., Li, Y., et al. (2013). Biglycan fragmentation in pathologies associated with extracellular matrix remodeling by matrix metalloproteinases. Fibrogenesis Tissue Repair, 6(1), 9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23635022.

    Article  CAS  Google Scholar 

  28. Barascuk, N., Genovese, F., Larsen, L., Byrjalsen, I., Zheng, Q., Sun, S., et al. (2013). A MMP derived versican neo-epitope is elevated in plasma from patients with atherosclerotic heart disease. International Journal of Clinical and Experimental Medicine, 6(3), 174–184.

    PubMed  PubMed Central  Google Scholar 

  29. Mygind, N. D., Michelsen, M. M., Pena, A., Qayyum, A. A., Frestad, D., Christensen, T. E., et al. (2016). Coronary microvascular function and myocardial fibrosis in women with angina pectoris and no obstructive coronary artery disease: the iPOWER study. Journal of Cardiovascular Magnetic Resonance, 18(1).

  30. Pencina, M. J., D’Agostino, R. B., & Vasan, R. S. (2010). Statistical methods for assessment of added usefulness of new biomarkers. Clinical Chemistry and Laboratory Medicine, 48(12), 1703–1711 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20716010.

    Article  CAS  Google Scholar 

  31. Ntusi, N. A. B., Piechnik, S. K., Francis, J. M., Ferreira, V. M., Matthews, P. M., Robson, M. D., et al. (2015). Diffuse Myocardial Fibrosis and Inflammation in Rheumatoid Arthritis: Insights From CMR T1 Mapping. JACC Cardiovascular Imaging, 8(5), 526–536 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25890584.

    Article  Google Scholar 

  32. Kong, P., Christia, P., & Frangogiannis, N. G. (2014). The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences, 71(4), 549–574 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23649149.

    Article  CAS  Google Scholar 

  33. Frustaci, A., Kajstura, J., Chimenti, C., Jakoniuk, I., Leri, A., Maseri, A., et al. (2000). Myocardial cell death in human diabetes. Circulation Research, 87(12), 1123–1132 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11110769.

    Article  CAS  Google Scholar 

  34. Pardo Mindán, F. J., & Panizo, A. (1993). Alterations in the extracellular matrix of the myocardium in essential hypertension. European Heart Journal, 14(Suppl J), 12–14 Available from: http://www.ncbi.nlm.nih.gov/pubmed/8281955.

    PubMed  Google Scholar 

  35. Schwartzkopff, B., Motz, W., Frenzel, H., Vogt, M., Knauer, S., & Strauer, B. E. (1993). Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation, 88(3), 993–1003 Available from: http://www.ncbi.nlm.nih.gov/pubmed/8353927.

    Article  CAS  Google Scholar 

  36. Lindsey, M. L., Iyer, R. P., Zamilpa, R., Yabluchanskiy, A., DeLeon-Pennell, K. Y., Hall, M. E., et al. (2015). A Novel Collagen Matricryptin Reduces Left Ventricular Dilation Post-Myocardial Infarction by Promoting Scar Formation and Angiogenesis. Journal of the American College of Cardiology, 66(12), 1364–1374 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26383724.

    Article  Google Scholar 

  37. Sado, D. M., Flett, A. S., Banypersad, S. M., White, S. K., Maestrini, V., Quarta, G., et al. (2012). Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart, 98(19), 1436–1441 Available from: http://heart.bmj.com/lookup/doi/10.1136/heartjnl-2012-302346.

    Article  Google Scholar 

  38. Liu, C. Y., Liu, Y. C., Wu, C., Armstrong, A., Volpe, G. J., Van Der Geest, R. J., et al. (2013). Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). Journal of the American College of Cardiology, 62(14), 1280–1287.

    Article  Google Scholar 

  39. Kawel-Boehm, N., Maceira, A., Valsangiacomo-Buechel, E. R., Vogel-Claussen, J., Turkbey, E. B., Williams, R., et al. (2015). Normal values for cardiovascular magnetic resonance in adults and children. Journal of Cardiovascular Magnetic Resonance, 17(1), 29 Available from: http://jcmr-online.com/content/17/1/29.

    Article  Google Scholar 

  40. Nielsen, S. H., Mygind, N. D., Michelsen, M. M., Bechsgaard, D. F., Suhrs, H. E., Genovese, F., et al. (2018). Accelerated collagen turnover in women with angina pectoris without obstructive coronary artery disease: An iPOWER substudy. European Journal of Preventive Cardiology, 25(7).

  41. Wong, T. C., Piehler, K., Meier, C. G., Testa, S. M., Klock, A. M., Aneizi, A. A., et al. (2012). Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation, 126(10), 1206–1216 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22851543.

    Article  Google Scholar 

  42. Karsdal, M. A., Henriksen, K., Leeming, D. J., Woodworth, T., Vassiliadis, E., & Bay-Jensen, A.-C. (2010). Novel combinations of Post-Translational Modification (PTM) neo-epitopes provide tissue-specific biochemical markers--are they the cause or the consequence of the disease? Clinical Biochemistry, 43(10–11), 793–804 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20381482.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Danish Heart Foundation, the University of Copenhagen, The Innovation Foundation, and the Danish Research Fund (Den Danske Forskningsfond) for financial support and all collaborators in the iPOWER group. We also thank the Department of Cardiology at Bispebjerg Hospital and the Department of Radiology at Rigshospitalet where the examinations have taken place. A special thanks to the CMR technicians Birte Kjærulff, Jesper Kromann, Andrija Srkoc, and Torben Vaaben for assisting in scanning the participants. Finally, we thank all the participants for their time and willingness to contribute to the research.

Funding

This work was supported by The Danish Heart Foundation (grant number: 11-10-R87-B-A3628-22678), the Danish Research Fund (Den Danske Forskningsfond), and the University of Copenhagen.

Author information

Authors and Affiliations

Authors

Contributions

NDM designed the study, included patients and participants, performed the CMR examinations, and made the manuscript draft ready for submission

SHN designed the study, performed biomarker analyses, and made the manuscript draft ready for submission

MMM helped in design of the study, included patients and participants. Reviewed the draft critically before submission

AP helped in design of the study, included patients and participants. Reviewed the draft critically before submission

ES helped in design of the study, included patients and participants. Reviewed the draft critically before submission

DFB helped in design of the study, included patients and participants. Reviewed the draft critically before submission

KB helped in design of the study, included patients and participants. Reviewed the draft critically before submission

FG helped in the design of the study with focus on biomarkers. Reviewed the draft critically before submission

HBN helped in the design of the study with focus on biomarkers. Reviewed the draft critically before submission

MK helped in the design of the study with focus on biomarkers. Reviewed the draft critically before submission

NV helped in the design of the study with focus on cardiac magnetic resonance. Reviewed the draft critically before submission

EP designed the study. Reviewed the draft critically before submission

JK designed the study. Reviewed the draft critically before submission

Corresponding author

Correspondence to Naja Dam Mygind.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the Danish Regional Committee on Biomedical Research Ethics (H-3-2012-005). Informed consent was obtained from all individual participants included in the study upon written and oral information.

Conflict of Interest

FG and MK are full-time employees at Nordic Bioscience and HBN is a full-time employee at ProScion. FG and MK hold stocks at Nordic Bioscience. All other authors have no conflict of interest.

Additional information

Associate Editor Joost Sluijter oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Naja Dam Mygind and Signe Holm Nielsen share first authorship.

Eva Prescott and Jens Kastrup share last authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mygind, N.D., Nielsen, S.H., Michelsen, M.M. et al. Proteoglycan Remodeling Is Accelerated in Females with Angina Pectoris and Diffuse Myocardial Fibrosis: the iPOWER Study. J. of Cardiovasc. Trans. Res. 14, 921–929 (2021). https://doi.org/10.1007/s12265-021-10106-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10106-y

Keywords

Navigation