Skip to main content
Log in

Hardening of Al–Si–Cu–Mg Cast Alloys: Role of Ag and Zn addition

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The present work was undertaken with the aim of studying the microstructural changes and intermetallic phases in Al-Si base 413.0 alloys as well as variations in tensile properties, including ultimate stress, yield strength and elongation at rupture, resulting from the addition of alloyed elements: strontium (Sr), magnesium (Mg), copper (Cu), silver (Ag), zinc (Zn) and nickel (Ni), to the base alloy 413.0, under different conditions of heat treatments, i.e., solutionizing and artificial aging (in the temperature range of 155 °C–240 °C). The results obtained in relation to microstructural observations and tensile tests reveal that the addition of alloying elements, in particular Mg, Cu, Ag, Ni, Zn and Sr, leads to an increase in the ultimate stress and yield strength values with a decrease in the strain levels of the base alloy 413.0, following hardening during artificial aging. Both Ag and Zn do not form specific phases during solidification at a slow rate of ~ 0.8 °C/s but only segregate to the α-aluminum cell boundaries. Addition of 0.73% Ag improves the values of yield strength at all aging temperatures. Also, it enhances the alloy resistance to softening during aging in the temperature range 200–240 °C. Similar behavior was exhibited by the addition of 2.5% Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. M. Zeren, Effect of copper and silicon content on mechanical properties in Al–Cu–Si–Mg alloys. J. Mater. Process. Technol. 169(2), 292–298 (2005)

    Article  CAS  Google Scholar 

  2. E. Sjölander, S. Seifeddine, The heat treatment of Al–Si–Cu–Mg casting alloys. J. Mater. Process. Technol. 210(10), 1249–1259 (2010)

    Article  Google Scholar 

  3. C.H. Caceres, I.L. Svensson, J.A. Taylor, Strength-ductility behaviour of Al–Si–Cu–Mg casting alloys in T6 temper. Int. J. Cast Met. Res. 15(5), 531–543 (2003)

    Article  CAS  Google Scholar 

  4. P.S. Wang, S.L. Lee, J.C. Lin, M.T. John, Effects of solution temperature on mechanical properties of 319.0 aluminum casting alloys containing trace beryllium. J. Mater. Res. 15(09), 2027–2035 (2000)

    Article  CAS  Google Scholar 

  5. S.P. Ringer, K. Hono, Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies. Mater. Charact. 44(1), 101–131 (2000)

    Article  CAS  Google Scholar 

  6. R. Molina, P. Amalberto, M. Rosso, Mechanical characterization of aluminium alloys for high temperature applications Part1: Al-Si-Cu alloys. Metall. Sci. Technol. 29(1), 5–11 (2011)

    Google Scholar 

  7. H.R. Ammar, C. Moreau, A.M. Samuel, F.H. Samuel, H.W. Doty, Influences of alloying elements, solution treatment time and quenching media on quality indices of 413-type Al–Si casting alloys. Mater. Sci. Eng., A 489(1), 426–438 (2008)

    Article  Google Scholar 

  8. F.J. Tavitas-Medrano, J.E. Gruzleski, F.H. Samuel, S. Valtierra, H.W. Doty, Effect of Mg and Sr-modification on the mechanical properties of 319-type aluminum cast alloys subjected to artificial aging. Mater. Sci. Eng. A 480(1), 356–364 (2008)

    Article  Google Scholar 

  9. D.G. Eskin, Decomposition of supersaturated solid solutions in Al–Cu-Mg–Si Alloys. J. Mater. Sci. 38, 279–290 (2003)

    Article  CAS  Google Scholar 

  10. S.K. Son, M. Takeda, M. Mitome, Y. Bando, T. Endo, Precipitation behaviour of an Al–Cu alloy during isothermal aging at low temperatures. Mater. Lett. 75, 629–632 (2005)

    Article  Google Scholar 

  11. S.P. Ringer, K. Hono, Microstructural evolution and age hardening in aluminum alloys: Atom Probe Field-Ion microscopy and transmission electron microscopy studies. Mater. Charact. 44, 101–131 (2000)

    Article  CAS  Google Scholar 

  12. C.R. Hutchinson, S.P. Ringer, Precipitation processes in Al–Cu–Mg alloys microalloyed with Si. Metall. Mater. Trans. A 31A, 2721–2733 (2000)

    Article  CAS  Google Scholar 

  13. S. Abis, M. Massazza, P. Mengucci, G. Tiontino, Early Ageing Mechanisms in a High-Copper AlCuMg Alloy. Scripta Mater. 45, 685–691 (2001)

    Article  CAS  Google Scholar 

  14. D. Emadi, L.V. Whiting, M. Sahoo, J.H. Sokolowski, P. Burke, M. Hart, Optimal heat treatment of A356.2 Alloy, in Light Metals. (The Minerals, Metals, and Materials Society, Warrendale, 2003), pp. 983–989

    Google Scholar 

  15. N.R. Andrade González, Aging Effects in 319-Type Alloys, PhD. Thesis, McGill University (2006).

  16. D. Apelian, S. Shivkumar, G. Sigworth, Fundamental aspects of heat treatment of cast Al–Si–Mg Alloys. AFS Trans. 97, 727–742 (1989)

    Google Scholar 

  17. F.H. Samuel, A.M. Samuel, H. Liu, Effect of Magnesium Content on the Aging Behaviour of Water-Chilled Al-Si-Cu-Mg-Fe-Mn (380) Alloy Castings. J. Mater. Sci. 30, 1–10 (1995)

    Google Scholar 

  18. R.R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals Park, Ohio, 1973).

    Google Scholar 

  19. A.J. McAlister, The Ag−Al (Silver-Aluminum) system. Bull. Alloy Phase Diagr. 8, 526 (1987)

    Article  Google Scholar 

  20. H. Okamoto (ed.), Desk Handbook: Phase Diagrams for Binary Alloys (ASM International, Materials Park, 2000)

    Google Scholar 

  21. N.A. Zarkevich, D.D. Johnson, Predicted hcp Ag-Al metastable phase diagram, equilibrium ground states, and precipitate structure. Phys. Rev. B, 67(6), 1-7 (2003). id. 064104

  22. S.S. Lim, P.L. Rossiter, J.E. Tibballs, Assessment of the Al–Ag binary phase diagram. Calphad 19, 131–141 (1995)

    Article  CAS  Google Scholar 

  23. M. Demirtas, G. Purcek, H. Yanar, Z.J. Zhang, Z.F. Zhang, Effect of chemical composition and grain size on RT superplasticity of Zn-Al alloys processed by ECAP. Lett. Mater. 5(3), 328–334 (2015)

    Article  Google Scholar 

  24. L. Li, S. Ji, Q. Zhu, Y. Wang, X. Dong, W. Yang, S. Midson, Y. Kang, Effect of Zn concentration on the microstructure and mechanical properties of Al-Mg-Si-Zn alloys processed by gravity die casting. Metall. Mater. Trans. A 49A, 3247–3256 (2018)

    Article  Google Scholar 

  25. T. Saitoa, S. Wenner, E. Osmundsen, C.D. Marioarab, S.J. Andersen, J. Røyset, W. Lefebvre, R. Holmestad, The effect of Zn on precipitation in Al–Mg–Si alloys. Phil. Mag. 94(21), 2410–2425 (2014)

    Article  Google Scholar 

  26. M.H. Abdelaziz, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Effect of additives on the microstructure and tensile properties of Al–Si alloys. J. Mater. Technol. 8, 2255–2268 (2019)

    CAS  Google Scholar 

  27. A. Mohamed and F. H. Samuel, A Review on the Heat Treatment of Al-Si-Cu/Mg Casting Alloys, in Heat Treatment - Conventional and Novel Applications, F. Czerwinski, Editor. 2012: InTech Open Access, Chapter 4, pp. 55-69. https://doi.org/10.5772/50282

  28. W.D. Callister, Fundamentals of Materials Science and Engineering: An Interactive E, vol. 5 (Wiley, New York, 2001).

    Google Scholar 

  29. D. Eskin, Decomposition of supersaturated solid solutions in Al–Cu–Mg–Si alloys. J. Mater. Sci. 38(2), 279–290 (2003)

    Article  CAS  Google Scholar 

  30. A.M. Samuel, F.H. Samuel, Modification of iron intermetallics by magnesium and strontium in Al–Si alloys. Int. J. Cast Met. Res. 10(3), 147–157 (1997)

    Article  CAS  Google Scholar 

  31. E.A. Elsharkawi, M.H. Abdelaziz, H.W. Doty, S. Valtierra, F.H. Samuel, Effect of β-Al5FeSi and π-Al8Mg3FeSi6 phases on the impact toughness and fractography of Al–Si–Mg-based alloys. Int. J. Metalcast. 12(1), 148–163 (2018). https://doi.org/10.1007/s40962-017-0153-8

    Article  Google Scholar 

  32. E.A. Elsharkawi, A.M. Samuel, F.H. Samuel, E. Simielli and G.K. Sigworth, Influence of solutionizing time, modification, and cooling rate on the decomposition of Mg-containing iron intermetallic phase in 357 alloys. Transactions of the American Foundry Society, 120, pp. 55-65; 116th Metalcasting Congress, April 17-20, 2012, Columbus, Ohio.

  33. M.F. Ibrahim, E.M. Elgallad, S. Valtierra, H.W. Doty, F.H. Samuel, Metallurgical parameters controlling the eutectic silicon characteristics in Be-treated Al–Si–Mg alloys. Materials 9, 78 (2016). https://doi.org/10.3390/ma9020078

    Article  CAS  Google Scholar 

  34. J.M. Rosalie, L. Bourgeois, Silver segregation to θ′ (Al2Cu)–Al interfaces in Al–Cu–Ag alloys. Acta Mater. 60, 6033–6041 (2012)

    Article  CAS  Google Scholar 

  35. G.A. Zaki, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of metallrgical parameters on the performance of Al–2%Cu-based alloys. Int. J. Metalcast. 11(3), 581–597 (2017). https://doi.org/10.1007/s40962-016-0113-8

    Article  Google Scholar 

  36. G.A. Zaki, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of metallurgical parameters on the performance of Al–Cu based alloys. Int. J. Metall. Mater. Sci. Eng. 6(1), 35–56 (2016)

    Google Scholar 

  37. Y. Yan, X. Zhang, F. Li, F. Li, H. Wang, H. Liu, B. Xiong, Effect of Zn addition on microstructure and mechanical properties of an Al–Mg–Si alloy. Mater. Int. 24, 97–100 (2014)

    CAS  Google Scholar 

  38. G.F.V. Voort, J. Asensio-Lozano, The Al-Si phase diagram. Microsc. Microanal. 15(2), 60–61 (2009). https://doi.org/10.1017/S1431927609092642

    Article  Google Scholar 

  39. L. Liu, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, Influence of oxides on porosity formation in Sr-treated Al-Si casting alloys. J. Mater. Sci. 38(6), 1255–1267 (2003)

    Article  CAS  Google Scholar 

  40. A.M. Samuel, F.H. Samuel, Effect of Mg and Sr Addition on the Formation of Iron Based Intermetallics in Al-Si-Fe DC Alloys, in International Symposium on Light Metals 1997 Métaux Légers as held at the 36th Annual Conference of Metallurgists of CIM., L.M. 1997, Editor. 1997: Sudbury, On., Canada. pp. 425-437

  41. F.H. Samuel, G. Pucella, C. Villeneuve, A.M. Samuel, H.W. Doty, S. Valtierra, Microstructural observations on Fe-intermetallics in unmodified and Sr-modified Al-Si-Cu (A3801) die casting alloy. Int. J. Cast Metals Res. 12(3), 197–210 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Samuel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samuel, A.M., Samuel, F.H., Abdelaziz, M.H. et al. Hardening of Al–Si–Cu–Mg Cast Alloys: Role of Ag and Zn addition. Inter Metalcast 16, 3–19 (2022). https://doi.org/10.1007/s40962-021-00573-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00573-z

Keywords

Navigation