Skip to main content
Log in

Neutron–proton interaction, bubble structure and neutron skin properties of Co in a Supernova

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present paper, we investigated the neutron skin properties, central depletion effects, residual and average neutron–proton interactions for Co in a Type II Supernova 1987A. The neutron skin thicknesses performed by Skyrme–Hartree–Fock model for the isotopic chain of Co \((17\le N\le 82)\) are obtained with different methods to investigate the bulk and surface contributions to neutron skin thicknesses as a function of neutron number N and relative neutron excess I = (N-Z)/A. For this purpose, two-parameter Fermi (2pF) distributions for each nucleus are obtained by the proton and neutron density distributions. Since the neutron skin thickness demonstrates the dependency on the symmetry pressure of neutron matter and sensitive to the symmetry energy at the sub-saturation density, the neutron skin properties lead to the investigation on the formation and composition of the crusts in Supernova and neutron stars. For a proper understanding of surface effects of nuclei, the central depletion (or bubble structure) effects on neutron skin of nuclei in the Supernova are explained by calculating the bubble parameters b and b. Furthermore, in order to illustrate accuracy of theoretical model used in the current work, the mass model approach is also analyzed by the calculating residual and average neutron–proton interactions, where the fluctuations in the mass model approaches have also been compared with the experimental and theoretical results in the literature. In order to evaluate more nuclear properties, we also analyzed the charge form factors and the single- particle energy levels for Co isotopes in the Supernova for providing nuclear data for electron-nucleus scattering experimental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Shen, H. Tokibt, K. Oyamatsucg and K. Sumiyoshid Nucl. Phys. A 721 1048 (2003)

    Article  ADS  Google Scholar 

  2. H. Yasin, S. Schäfer, A. Arcones and A. Schwenk Phys. Rev. Lett. 124 092701 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  3. C. Y. Cardall Nucl. Phys. B 229 315 (2012)

    Article  Google Scholar 

  4. G. Blanc and L. Greggio New Astron. 13 606 (2008)

    Article  ADS  Google Scholar 

  5. Z. Young and L. Xuan-bin Chin. Astron. Astrophys. 17 383 (1993)

    Article  ADS  Google Scholar 

  6. K. Ch Chatzisavvas, V. P. Psonis, C. P. Panos and Ch. C. Moustakidis Phys. Lett. A 373 3901 (2009)

    Article  ADS  Google Scholar 

  7. S L Shapiro and S A Teukolsky Black Holes, White Dwarfs, and Neutron Stars: The Phys. of Compact Objects, John Wiley, New York, (1983)

  8. C. E. Alvarez-Salazar and C. J. Quimbay Astroparticle Phys. 103 67 (2018)

    Article  ADS  Google Scholar 

  9. J. Wambach Phys. Rep. 242 387 (1994)

    Article  ADS  Google Scholar 

  10. D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin and P. Haensel Phys. Rep. 354 1 (2001)

    Article  ADS  Google Scholar 

  11. N. Chamel Nucl. Phys. A 773 263 (2006)

    Article  ADS  Google Scholar 

  12. M. Warda, M. Centelles, X. Viñas and X. Roca-Maza Phys. Rev. C 89 064302 (2014)

    Article  ADS  Google Scholar 

  13. G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera and C. W. De Jager At. Data Nucl. Data Tables 60 177 (1995)

    Article  ADS  Google Scholar 

  14. H. D. Vries, C. D. Jager and C. D. Vries At. Data Nucl. Data Tables 36 495 (1987)

    Article  ADS  Google Scholar 

  15. I. Angeli and K. Marinova At. Data Nucl. Data Tables 99 69 (2013)

    Article  ADS  Google Scholar 

  16. G. W. Hoffmann et al Phys. Rev. C 21 1488 (1980)

    Article  ADS  Google Scholar 

  17. B. C. Clark, L. J. Kerr and S. Hama Phys. Rev. C 67 054605 (2003)

    Article  ADS  Google Scholar 

  18. C. Batty, E. Friedman and A. Gal Nucl. Phys. A 592 487 (1995)

    Article  ADS  Google Scholar 

  19. A. Krasznahorkay et al Nucl. Phys. A 731 224 (2004)

    Article  ADS  Google Scholar 

  20. A. Trzcińska, J. Jastrzȩbski, P. Lubiński, F. J. Hartmann, R. Schmidt, T. von Egidy and B. Kłos Phys. Rev. Lett. 87 082501 (2001)

    Article  ADS  Google Scholar 

  21. J. Jastrzebski, A. Trzcinska, P. Lubinski, B. Klos, F. J. Hartmann, T. von Egidy and S. Wycech Int. J. Mod. Phys. E 13 343 (2004)

    Article  ADS  Google Scholar 

  22. B. Kłos et al Phys. Rev. C 76 014311 (2007)

    Article  ADS  Google Scholar 

  23. A. Klimkiewicz et al Acta Phys. Pol. B 40 589 (2009)

    ADS  Google Scholar 

  24. J. Zenihiro et al Phys. Rev. C 82 044611 (2010)

    Article  ADS  Google Scholar 

  25. M. Warda, M. Centelles, X. Vinas and X. Roca-Maza Acta Phys. Polon. B 43 209 (2012)

    Article  Google Scholar 

  26. Prex, http://hallaweb.jlab.org/parity/prex. Access date: 11/05/2020

  27. P Sarriguren, M K Gaidarov, E Moya de Guerra and A N Antonov Phy. Rev. C 76 044322 (2007)

  28. L. Ray Phys. Rev. C 19 1855 (1979)

    Article  ADS  Google Scholar 

  29. G. W. Hoffmann et al Phys. Rev. Lett. 47 1436 (1981)

    Article  ADS  Google Scholar 

  30. A. Krasznahorkay et al Nucl. Phys. A 567 521 (1994)

    Article  ADS  Google Scholar 

  31. A. Krasznahorkay et al Phys. Rev. Lett. 82 3216 (1999)

    Article  ADS  Google Scholar 

  32. G. Saxena, M. Kumawat, M. Kaushik, S. K. Jain and M. Aggarwal Phys. Lett. B 788 1 (2019)

    Article  ADS  Google Scholar 

  33. G. Saxena, M. Kumawat, B. K. Agrawal and M. Aggarwal J. Phys. G: Nucl. Part. Phys. 46 065105 (2019)

    Article  ADS  Google Scholar 

  34. G. Baym H A Bethe and C J Pethick Nucl Phys. A 175 225 (1971)

    Google Scholar 

  35. G Johnson, Hafomn code, http://phys.lsu.edu/graceland/faculty/cjohnson/. Access date: 11/05/2020

  36. P. G. Reinhard and H. Flocard Nucl. Phys. A 584 467 (1995)

    Article  ADS  Google Scholar 

  37. E. Chabanat, P. Bonche, P. Haensel, J. Meyer and R. Schaeffer Nucl. Phys. A 627 710 (1997)

    Article  ADS  Google Scholar 

  38. E. Chabanat, P. Bonche, P. Haensel, J. Meyer and R. Schaeffer Nucl. Phys. A 635 231 (1998)

    Article  ADS  Google Scholar 

  39. F. Tondeur, M. Brack, M. Farine and J. M. Pearson Nucl. Phys. A 420 297 (1984)

    Article  ADS  Google Scholar 

  40. K. Bennaceur and J. Dobaczewski Comput. Phys. Commun. 168 96 (2005)

    Article  ADS  Google Scholar 

  41. P. G. Reinhard F Grummer and K Z Goeke Z Phys. A 317 339 (1984)

    ADS  Google Scholar 

  42. C. Mondal et al Phys. Rev. C 93 064303 (2016)

    Article  ADS  Google Scholar 

  43. R. W. Hasse and W. D. Myers Geometrical Relationships of Macroscopic. (Heidelberg: Nucl. Phys. Springer-Verlag) (1988)

    Book  Google Scholar 

  44. M Grasso Phys. Rev. C 76 044319 (2007)

  45. B. Schuetrumpf W Nazarewicz and P G Reinhard Phys Rev. C 96 024306 (2017)

    Google Scholar 

  46. J. Friedrich and N. Voegler Nucl. Phys. A 373 192 (1982)

    Article  ADS  Google Scholar 

  47. Z. Wu S Changizi and C Qi Phys Rev. C 93 034334 (2016)

    Google Scholar 

  48. J. Dechargé, J.-F. Berger and M. Girod H Goutte and J Libert Nucl Phys. A 716 55 (2003)

    Google Scholar 

  49. M. Bender, K. Rutz and P.-G. Reinhard J A Maruhn and W Greiner Phys Rev. C 60 034304 (1999)

    Google Scholar 

  50. P. Möller and A. J. Sierk T Ichikawa and H Sagawa At Data Nucl. Data Tables 109 1 (2016)

    Article  ADS  Google Scholar 

  51. M Wang, G Audi, F G Kondev, W J Huang, S Naimi and X Xu Chinese Phys. C 41 030003 (2017)

  52. P. E. Hodgson and D. J. Millener Revista Brasileira de Física 2 1 (1972)

    Google Scholar 

  53. E B Suckling University of Surrey. Ph.D thesis (2011)

  54. H. Müther and A. Polls Phys. Rew. C 99 034315 (2019)

    ADS  Google Scholar 

  55. A. N. Antonov et al Phys. Rev. C 72 044307 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Artun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artun, O. Neutron–proton interaction, bubble structure and neutron skin properties of Co in a Supernova. Indian J Phys 96, 885–894 (2022). https://doi.org/10.1007/s12648-021-02008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02008-1

Keywords

Navigation