Skip to main content

Advertisement

Log in

Assessment of Human Health Risk of Chromium and Nitrate Pollution in Groundwater and Soil of the Matanza-Riachuelo River Basin, Argentina

  • Original Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

Abstract

This study assesses hexavalent chromium [Cr(VI)] and nitrate (NO3) in polluted groundwater and soil, and evaluates the impact on the health of the inhabitants of the Matanza-Riachuelo River basin, Argentina. Sixty groundwater samples and 18 soil samples were collected. Statistical analysis and Stiff diagrams were used for the hydrochemical characterization of the groundwater. A method developed by the United States Environmental Protection Agency for health risk assessment was applied to the Upper and the Puelche aquifers. The non-carcinogenic (NCR) and carcinogenic risks (CR) posed by Cr(VI) and NO3 in groundwater via ingestion and dermal contact were determined in children and adults. The effect of Cr on children through ingestion, dermal contact and inhalation as a result of exposure to soil was also established. The results indicated that the Cr(VI) and NO3 average values were 0.35 mg/L and 76 mg/L, respectively, in the Upper Aquifer, whereas the Cr(VI) average values were 1.41 mg/L and 38 mg/L for NO3 in the Puelche Aquifer. Children and adults exposed to groundwater via ingestion and dermal contact faced acceptable NCR of NO3, but unacceptable NCR and CR of Cr(VI). Water ingestion was the main exposure route; HQing = 4.15 and 4.07 and CRing = 2.74E−03 and 2.36E−03 in children and adults, respectively, in the Upper Aquifer; HQing = 17 and 14.1 and CRing = 1.04E−02 and 9.81E−03 in children and adults, respectively, in the Puelche Aquifer. As regards the soil exposure pathways, NCR and CR of Cr(VI) are unacceptable, dermal contact being the main route (HQderm = 4.63; CRderm = 9.34E−04).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ACUMAR (2016) Plan Integral de Saneamiento Ambiental. Buenos Aires. http://www.acumar.gob.ar/plan-integral/. Accessed 7 May 2019

  • Adimalla N (2020) Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environ Geochem Health 42:59–75. https://doi.org/10.1007/s10653-019-00270-1

    Article  CAS  Google Scholar 

  • Adimalla N (2019) Spatial distribution, exposure, and potential health risk assessment from nitrate in drinking water from semi-arid region of South India. Hum Ecol Risk Assess 26:310–334. https://doi.org/10.1080/10807039.2018.1508329

    Article  CAS  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC

    Google Scholar 

  • Auge MP (2004) Vulnerabilidad de Acuíferos. Revista Latinoamericana de Hidrología 4:85–103

    Google Scholar 

  • Baig JA, Kazi TG, Mustafa MA, Solangi IB, Mughal MJ, Afridi HI (2016) Arsenic exposure in children through drinking water in different districts of Sindh, Pakistan. Biol Trace Elem 173:35–46. https://doi.org/10.1007/s12011-016-0636-0

    Article  CAS  Google Scholar 

  • Baig JA, Bhutto AA, Uddin S, Kazi TG, Khan MI (2018) Quantification of hexavalent chromium in surface water samples by a selective electrochemical Method. J AOAC Int 101:577–586. https://doi.org/10.5740/jaoacint.17-0208

    Article  CAS  Google Scholar 

  • Baron D, Palmer CD, Stanley JT (1996) Identification of two iron—chromate precipitates in a Cr(VI)-polluted soil. Environ Sci Technol 30:964–968

    Article  CAS  Google Scholar 

  • Berna EC, Johnson TM, Makdisi RS, Basu A (2010) Cr stable isotopes as indicators of Cr (VI) reduction in groundwater: a detailed time-series study of a point-source plume. Sci Total Environ 44:1043–1048

    Article  CAS  Google Scholar 

  • Blacksmith Institute and Green Cross Switzerland (2013) The worlds worst 2013: The top ten toxic threats. Zurich. https://www.worstpolluted.org/docs/TopTenThreats2013.pdf. Accessed 7 May 2019

  • Blanco M, Paoloni JD, Morrás H, Fiorentino C, Sequeira ME, Amiotti NN, Espósito M (2012) Partition of arsenic in soils sediments and the origin of naturally elevated concentrations in groundwater of the southern pampa region (Argentina). Sci Total Environ 66:2075–2084. https://doi.org/10.1007/s12665-011-1433-x

    Article  CAS  Google Scholar 

  • Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminat dynamics. Environ Sci Technol 44:15–23. https://doi.org/10.1021/es9026248

    Article  CAS  Google Scholar 

  • Ceballos E, Bea SA, Sanci R (2018) Applying reactive transport modeling in a chromium polluted site in the Matanza-Riachuelo Basin, Buenos Aires, Argentina. Int J Environ Heal R 9:16–34

    Article  Google Scholar 

  • Ceballos E, Margalef-Martí R, Carrey R, Frei R, Otero N, Soler A, Ayora C (2020) Characterisation of the natural attenuation of chromium contamination in the presence of nitrate using isotopic methods. A case study from the Matanza-Riachuelo River basin, Argentina. Sci Total Environ 699:134331. https://doi.org/10.1016/j.scitotenv.2019.134331

    Article  CAS  Google Scholar 

  • Chabukdhara M, Nema AK (2013) Heavy metals assessment in urban soils around industrial clusters in Ghaziabad, India: probabilistic health risk approach. Ecotoxicol Environ Safe 87:57–64. https://doi.org/10.1016/j.ecoenv.2012.08.032

    Article  CAS  Google Scholar 

  • Cittadino A, Ocello N, Majul MV, Ajhuacho R, Dietrich P, Igarzabal MA (2020) Heavy metal pollution and health risk assessment of soils from open dumps in the metropolitan area of Buenos Aires, Argentina. Environ Monit Assess 192:291. https://doi.org/10.1007/s10661-020-8246-x

    Article  CAS  Google Scholar 

  • Decisioneering (2007) Crystal Ball 7.1 software. Denver, Colorado, USA

  • De Miguel E, Iribarren I, Chacón E, Ordoñez A, Charlesworth S (2007) Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 66:505–513. https://doi.org/10.1016/j.chemosphere.2006.05.065

    Article  CAS  Google Scholar 

  • Deng H, Chen G (2014) Health risk assessment for typical and abandoned chromium-polluted sites. Chin J Geochem 33:382–386. https://doi.org/10.1007/s11631-014-0701-3

    Article  CAS  Google Scholar 

  • Díaz Barriga F (1999) Metodología de identificación y evaluación de riesgos para la salud en sitios contaminados. Organización Panamericana de la Salud (OPS), Lima, Perú. http://www.bvsde.paho.org/bvsarp/e/fulltext/metodolo/metodolo.pdf. Accessed 1 Oct 2020

  • Fallahzadeh RA, Khosravi R, Dehdashti B, GhahramaniOmidi F, Adli A, Miri M (2018) Spatial distribution variation and probabilistic risk assessment of exposure to chromium in ground water supplies; a case study in the east of Iran. Food Chem Toxicol 115:260–266. https://doi.org/10.1016/j.fct.2018.03.019

    Article  CAS  Google Scholar 

  • He S, Wu J (2018) Hydrogeochemical characteristics, groundwater quality, and health risks from hexavalent chromium and nitrate in groundwater of Huanhe Formation in Wuqi County, Northwest China. Expos Health 11:125–137. https://doi.org/10.1007/s12403-018-0289-7

    Article  CAS  Google Scholar 

  • Heikoop M, Johnson TM, Birdsell KH, Longmire P, Hickmott DD, Jacobs EP, Broxton DE, Katzman D, Vesselinov VV, Din M, Vaniman DT, Reneau SL, Goering TJ, Glessner J, Basu A (2014) Isotopic evidence for reduction of anthropogenic hexavalent chromium in Los Alamos National Laboratory groundwater. Chem Geol 373:1–9. https://doi.org/10.1016/j.chemgeo.2014.02.022

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer’s) (2015) Agents classified by the IARC monographs, 1–114. http://monographs.iarc.fr/ENG/Classification. Accessed 8 Oct 2015

  • INDEC (Instituto Nacional de Estadística y Censos) (2010) “Censo Nacional de Población, Hogares y Viviendas 2010”: Censo del Bicentenario Resultados definitivos, Serie B No. 2, Buenos Aires, Argentina

  • Kelepertzis E (2014) Investigating the sources and potential health risks of environmental contaminants in the soils and drinking waters from the rural clusters in Thiva area (Greece). Ecotoxicol Environ Safe 100:258–265. https://doi.org/10.1016/j.ecoenv.2013.09.030

    Article  CAS  Google Scholar 

  • Limbozzi F (2011) Elemento traza en el agua subterránea. Rol de la zona no saturada como fuente de aporte de flúor. Disertación, Universidad Nacional del Sur, Argentina

  • Ma HW, Hung ML, Chen PC (2007) A systemic health risk assessment for the chromium cycle in Taiwan. Environ Int 33:206–218. https://doi.org/10.1016/j.envint.2006.09.011

    Article  CAS  Google Scholar 

  • Mehmood K, Ahmad HR, Saifullah, (2019) Quantitative assessment of human health risk posed with chromium in waste, ground, and surface water in an industrial hub of Pakistan. Arab J Geosci. https://doi.org/10.1007/s12517-019-4470-5

    Article  Google Scholar 

  • Monteverde M, Cipponeri M, Angelaccio C, Gianuzzi L (2013) Origen y calidad del agua para consumo humano: Salud de la población residente en el área de la cuenca Matanza-Riachuelo del Gran Buenos Aires. Salud Colectiva 9:53–63

    Article  Google Scholar 

  • Naz A, Mishra BK, Gupta SK (2016) Human health risk assessment of chromium in drinking water: a case study of Sukinda chromite mine, Odisha, India. Expos Health 8:253–264. https://doi.org/10.1007/s12403-016-0199-5

    Article  CAS  Google Scholar 

  • Othax N, Peluso F, González Castelain J, Masson I, Dubny S (2019) Evaluación de riesgo a la salud y contaminantes en agua de bebida. Importancia de la ingesta de agua. Acta Toxicológica Argentina 27:19–29

    Google Scholar 

  • Pasqualini MF, Montania EF, Hepp Y, Antolini L, Finkelstein JZ, García SI (2019) Mapa de riesgo sanitario ambiental de la Cuenca-Matanza Riachuelo (Argentina). Una metodología para priorizar intervenciones. Revista de Salud Ambiental 19:148–158

    Google Scholar 

  • Puckett LJ, Tesoriero AJ, Dubrovsky NM (2011) Nitrogen contamination of surficial aquifers: a growing legacy. Sci Total Environ 45:839–845. https://doi.org/10.1021/es1038358

    Article  CAS  Google Scholar 

  • RAIS (The Risk Assessment Information System) (2020) Toxicity values. https://rais.ornl.gov/tutorials/toxvals.html#2.4%20Derivation%20of%20Inhalation%20RfDs%20and%20Slope%20Factors. Accessed July 2020

  • Sacchi E, Acutis M, Bartoli M, Brenna S, Delconte CA, Laini A, Pennisi M (2013) Origin and fate of nitrates in groundwater from the central Po plain: insights from isotopic investigations. Appl Geochem 34:164–180. https://doi.org/10.1016/j.apgeochem.2013.03.008

    Article  CAS  Google Scholar 

  • Scioli C, Burgos G (2015) Determinación de la Recarga Natural y Antrópica en la cuenca del río Matanza-Riachuelo. Informe Final del Proyecto de Aguas Subterráneas en la Cuenca Matanza Riachuelo. Convenio entre la Autoridad de Cuenca Matanza- Riachuelo y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Segunda Etapa, p 43

  • Timofeev I, Kosheleva N, Kasimov N (2019) Health risk assessment based on the contents of potentially toxic elements in urban soils of Darkhan, Mongolia. J Environ Manage 242:279–289. https://doi.org/10.1016/j.jenvman.2019.04.090

    Article  CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1991) Risk assessment guidance for superfund, volume I, human health evaluation manual (part B, development of risk‐based preliminary remediation goals). EPA/540/R-92/003

  • USEPA (2019) Guidelines for human exposure assessment. Risk assessment forum, EPA/100/B-19/001

  • Vives L, Scioli C, Mancino C, Martínez S (2013) Modelación del flujo subterráneo en la cuenca Matanza-Riachuelo, provincia de Buenos Aires. 3. Modelo numérico de flujo. Temas Actuales de la Hidrología Subterránea. EDULP, La Plata, pp 101–108

  • Ward MH, deKok TM, Levallois P, Brender J, Gulis G, Nolan BT, Van Derslice J (2005) Workgroup report: drinking-water nitrate and health—recent findings and research needs. Environ Health Perspect 113:1607–1614. https://doi.org/10.1289/ehp.8043

    Article  CAS  Google Scholar 

  • Wanner C, Eggenberger U, Mäder U (2012) A chromate-polluted site in southern Switzerland—Part 2: reactive transport modeling to optimize remediation options. Appl Geochem 27:655–662. https://doi.org/10.1016/j.apgeochem.2011.11.008

    Article  CAS  Google Scholar 

  • WHO (2012) Guidelines for drinking-water quality. http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf. Accessed 15 Sept 2019

  • Wu J, Sun Z (2015) Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expos Health 8:311–329. https://doi.org/10.1007/s12403-015-0170-x

    Article  CAS  Google Scholar 

  • Xu Y, Dai S, Meng K, Wang Y, Ren W, Zhao L, Christie P, Teng Y (2018) Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in polluted rural soils. Sci Total Environ 630:618–629

    Article  CAS  Google Scholar 

  • Zabala ME, Manzano M, Vives L (2016) Groundwater chemical baseline values to assess the recovery plan in the Matanza-Riachuelo River basin, Argentina. Sci Total Environ 541:1516–1530. https://doi.org/10.1016/j.scitotenv.2015.10.006

    Article  CAS  Google Scholar 

  • Zhai Y, Zhao X, Teng Y, Li X, Zhang J, Wu J, Zuo R (2017) Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicol Environ Safe 137:130–142. https://doi.org/10.1016/j.ecoenv.2016.11.010

    Article  CAS  Google Scholar 

  • Zhang Y, Wu J, Xu B (2018) Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ Earth Sci 77:273. https://doi.org/10.1007/s12665-018-7456-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by projects PIP 2013-2015 (Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina) and PICT 2013-2422 (Ministerio de Ciencia, Tecnología e Innovación, MINCYT, Argentina). Thanks are due to the IHLLA technical staff, Ms. M.F. Altolaguirre and Ms. O. Floriani for their assistance in water sampling. Authors gratefully acknowledge Dr. Jordi Cama i Robert for his generous help. Language assistance by native English speaker George Von Knorring is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elina Ceballos.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceballos, E., Dubny, S., Othax, N. et al. Assessment of Human Health Risk of Chromium and Nitrate Pollution in Groundwater and Soil of the Matanza-Riachuelo River Basin, Argentina. Expo Health 13, 323–336 (2021). https://doi.org/10.1007/s12403-021-00386-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-021-00386-9

Keywords

Navigation