Skip to main content
Log in

Monotone Schemes for Convection–Diffusion Problems with Convective Transport in Different Forms

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Convective transport in convection–diffusion problems can be formulated differently. Convective terms are commonly written in nondivergent or divergent form. For problems of this type, monotone and stable schemes in Banach spaces are constructed in uniform and integral norms, respectively. Monotonicity is related to row or column diagonal dominance. When convective terms are written in symmetric form (the half-sum of the nondivergent and divergent forms), the stability is established in Hilbert spaces of grid functions. Diagonal dominance conditions are given that ensure the monotonicity of two-level schemes for time-dependent convection–diffusion equations and the stability in corresponding spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. H. Hundsdorfer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations (Springer, Berlin, 2003).

    Book  Google Scholar 

  2. K. W. Morton, Numerical Solution of Convection–Diffusion Problems (Chapman & Hall, London, 1996).

    MATH  Google Scholar 

  3. P. Wesseling, Principles of Computational Fluid Dynamics (Springer, Berlin, 2001).

    Book  Google Scholar 

  4. A. A. Samarskii and P. N. Vabishchevich, Numerical Solution of ConvectionDiffusion Problems (URSS, Moscow, 1999) [in Russian].

    Google Scholar 

  5. P. N. Vabishchevich, “On the form of the hydrodynamics equations,” High Speed Flow Field Conference, Moscow, Russia, November 19–22, 2007 (Moscow, 2007), pp. 1–9.

  6. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods (Springer, New York, 2007).

    Google Scholar 

  7. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems (Springer, Berlin, 2006).

    MATH  Google Scholar 

  8. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).

  9. A. A. Samarskii and A. V. Gulin, Stability of Finite Difference Schemes (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  10. M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations (Springer, New York, 1967).

    MATH  Google Scholar 

  11. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type (Nauka, Moscow, 1967; Am. Math. Soc., Providence, R.I., 1968).

  12. J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer (Taylor & Francis, Philadelphia, 1997).

    MATH  Google Scholar 

  13. D. N. Allen and R. V. Southwell, “Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder,” Quart. J. Mech. Appl. Math. 8, 129–145 (1955).

    Article  MathSciNet  Google Scholar 

  14. D. L. Scharfetter and H. K. Gummel, “Large-signal analysis of a silicon read diode oscillator,” IEEE Trans. Electron Devices 16, 4–77 (1969).

    Article  Google Scholar 

  15. N. M. Afanas’eva, A. G. Churbanov, and P. N. Vabishchevich, “Unconditionally monotone schemes for unsteady convection–diffusion problems,” Comput. Methods Appl. Math. 13 (2), 185–205 (2013).

    Article  MathSciNet  Google Scholar 

  16. M. N. Spijker, “Numerical ranges and stability estimates,” Appl. Numer. Math. 13, 241–249 (1993).

  17. C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties (SIAM, Philadelphia, 2008).

    MATH  Google Scholar 

  18. A. Friedman, Partial Differential Equations of Parabolic Type (Prentice-Hall, Englewood, 1964).

    MATH  Google Scholar 

  19. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge Univ. Press, Cambridge, 1990).

    MATH  Google Scholar 

  20. K. Dekker and J. G. Verwer, Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations (North-Holland, Amsterdam, 1984).

  21. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I: Nonstiff Problems (Springer-Verlag, Berlin, 1987).

  22. P. N. Vabishchevich, “Flux-splitting schemes for parabolic equations with mixed derivatives,” Comput. Math. Math. Phys. 53 (8), 1139–1152 (2013).

    Article  MathSciNet  Google Scholar 

  23. Y. X. Sun, “Sufficient conditions for generalized diagonally dominant matrices,” Numer. Math. (J. Chinese Univ.) 19 (3), 216–223 (1997).

  24. G. Wang, Z. Hong, and Z. Gao, “Sufficient conditions of nonsingular H-matrices,” J. Shanghai Univ. (English Edition) 8 (1), 35–37 (2004).

    Article  MathSciNet  Google Scholar 

  25. Z. J. Guo, Z. J. Guo, and J. G. Yang, “A new criteria for a matrix is not generalized strictly diagonally dominant matrix,” Appl. Math. Sci. 5 (6), 273–278 (2011).

    MathSciNet  MATH  Google Scholar 

  26. P. N. Vabishchevich, Additive Operator-Difference Schemes: Splitting Schemes (URSS, Moscow, 2013; de Gruyter, Berlin, 2014).

  27. P. N. Vabishchevich, “Finite-difference approximation of mathematical physics problems on irregular grids,” Comput. Methods Appl. Math. 5 (3), 294–330 (2005).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This study was supported by the Government of the Russian Federation, agreement no. 14.Y26.31.0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Vabishchevich.

Additional information

Translated by N. Berestova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vabishchevich, P.N. Monotone Schemes for Convection–Diffusion Problems with Convective Transport in Different Forms. Comput. Math. and Math. Phys. 61, 90–102 (2021). https://doi.org/10.1134/S0965542520120155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520120155

Keywords:

Navigation