Skip to main content

Advertisement

Log in

A Survey and Analysis on Automated Glioma Brain Tumor Segmentation and Overall Patient Survival Prediction

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Glioma is the deadliest brain tumor with high mortality. Treatment planning by human experts depends on the proper diagnosis of physical symptoms along with Magnetic Resonance (MR) image analysis. Highly variability of a brain tumor in terms of size, shape, location, and a high volume of MR images make the analysis time-consuming. Automatic segmentation methods achieve a reduction in time with excellent reproducible results. The article aims to survey the advancement of automated methods for Glioma brain tumor segmentation. It is also essential to make an objective evaluation of various models based on the benchmark. Therefore, the 2012–2019 BraTS challenges evaluate the state-of-the-art methods. The complexity of the tasks facing this challenge has grown from segmentation (Task 1) to overall survival prediction (Task 2) to uncertainty prediction for classification (Task 3). The paper covers the complete gamut of brain tumor segmentation using handcrafted features to deep neural network models for Task 1. The aim is to showcase a complete change of trends in automated brain tumor models. The paper also covers end to end joint models involving brain tumor segmentation and overall survival prediction. All the methods are probed, and parameters that affect performance are tabulated and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al. (2016) Tensorflow: A system for large-scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp 265–283

  2. Agn M, Puonti O, af Rosenschöld PM, Law I, Van Leemput K (2015) Brain tumor segmentation using a generative model with an rbm prior on tumor shape. In: BrainLes 2015, Springer, pp 168–180

  3. Agravat R, Raval MS (2019a) Brain tumor segmentation and survival prediction. arXiv preprint arXiv:190909399

  4. Agravat R, Raval MS (2020) 3d semantic segmentation of brain tumor for overall survival prediction. arXiv preprint arXiv:200811576

  5. Agravat RR, Raval MS (2016) Brain tumor segmentation-towards a better life. CSI Commun 40:31–35

    Google Scholar 

  6. Agravat RR, Raval MS (2018) Deep learning for automated brain tumor segmentation in mri images. In: Soft computing based medical image analysis, Elsevier, pp 183–201

  7. Agravat RR, Raval MS (2019b) Prediction of overall survival of brain tumor patients. In: TENCON 2019-2019 IEEE region 10 conference (TENCON), IEEE, pp 31–35

  8. Albiol A, Albiol A, Albiol F (2018) Extending 2d deep learning architectures to 3d image segmentation problems. In: International MICCAI brainlesion workshop, Springer, pp 73–82

  9. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

    Article  Google Scholar 

  10. Baid U, Talbar S, Rane S, Gupta S, Thakur MH, Moiyadi A, Thakur S, Mahajan A (2018) Deep learning radiomics algorithm for gliomas (drag) model: a novel approach using 3d unet based deep convolutional neural network for predicting survival in gliomas. In: International MICCAI brainlesion workshop, Springer, pp 369–379

  11. Bakas S, Zeng K, Sotiras A, Rathore S, Akbari H, Gaonkar B, Rozycki M, Pati S, Davatzikos C (2015) Glistrboost: combining multimodal mri segmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma segmentation. In: BrainLes 2015, Springer, pp 144–155

  12. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, Davatzikos C (2017a) Segmentation labels and radiomic features for the pre-operative scans of the tcga-gbm collection. the cancer imaging archive (2017)

  13. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, Davatzikos C (2017b) Segmentation labels and radiomic features for the pre-operative scans of the tcga-lgg collection. The cancer imaging archive 286

  14. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C (2017c) Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Sci data 4:170117

    Article  Google Scholar 

  15. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M, et al. (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:181102629

  16. Banerjee S, Mitra S, Shankar BU (2018) Multi-planar spatial-convnet for segmentation and survival prediction in brain cancer. In: International MICCAI brainlesion workshop, Springer, pp 94–104

  17. Barron JT (2019) A general and adaptive robust loss function. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4331–4339

  18. Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, Bouchard N, Warde-Farley D, Bengio Y (2012) Theano: new features and speed improvements. arXiv preprint arXiv:12115590

  19. Bauer S, Fejes T, Slotboom J, Wiest R, Nolte LP, Reyes M (2012) Segmentation of brain tumor images based on integrated hierarchical classification and regularization. In: MICCAI BraTS workshop. Nice: Miccai Society, p 11

  20. Bernal J, Kushibar K, Asfaw DS, Valverde S, Oliver A, Martí R, Lladó X (2019) Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif Intell Med 95:64–81

    Article  Google Scholar 

  21. Bharath HN, Colleman S, Sima DM, Van Huffel S (2017) Tumor segmentation from multimodal mri using random forest with superpixel and tensor based feature extraction. In: International MICCAI brainlesion workshop, Springer, pp 463–473

  22. for Biotechnology Information NC (2020 (accessed December 30, 2020)) National library of medicine. https://pubmed.ncbi.nlm.nih.gov/

  23. Buendia P, Taylor T, Ryan M, John N (2013) A grouping artificial immune network for segmentation of tumor images. Multimodal brain tumor segmentation 1

  24. Casamitjana A, Puch S, Aduriz A, Vilaplana V (2016) 3d convolutional neural networks for brain tumor segmentation: a comparison of multi-resolution architectures. Glioma. Multiple sclerosis, stroke and traumatic brain injuries, Springer, International workshop on brainlesion, pp 150–161

    Google Scholar 

  25. Casamitjana A, Catà M, Sánchez I, Combalia M, Vilaplana V (2017) Cascaded v-net using roi masks for brain tumor segmentation. In: International MICCAI brainlesion workshop, Springer, pp 381–391

  26. Castillo LS, Daza LA, Rivera LC, Arbeláez P (2017) Brain tumor segmentation and parsing on mris using multiresolution neural networks. In: International MICCAI brainlesion workshop, Springer, pp 332–343

  27. Center RM (2019 (accessed April 6, 2020)) Health Encyclopedia. https://www.urmc.rochester.edu/encyclopedia/ content.aspx

  28. Chandra S, Vakalopoulou M, Fidon L, Battistella E, Estienne T, Sun R, Robert C, Deutsch E, Paragios N (2019) Context aware 3d cnns for brain tumor segmentation. brainles 2018. Springer LNCS 11384:299–310

    Google Scholar 

  29. Chang PD (2016) Fully convolutional deep residual neural networks for brain tumor segmentation. Glioma. Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Springer, International Workshop on Brainlesion, pp 108–118

    Google Scholar 

  30. Chen L, Bentley P, Mori K, Misawa K, Fujiwara M, Rueckert D (2018a) Drinet for medical image segmentation. IEEE Trans Med Imaging 37(11):2453–2462

    Article  Google Scholar 

  31. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  32. Chen W, Liu B, Peng S, Sun J, Qiao X (2018b) S3d-unet: separable 3d u-net for brain tumor segmentation. In: International MICCAI brainlesion workshop, Springer, pp 358–368

  33. Chollet F, et al. (2018) Keras: The python deep learning library. Astrophysics source code library

  34. Choudhury AR, Vanguri R, Jambawalikar SR, Kumar P (2018) Segmentation of brain tumors using deeplabv3+. In: International MICCAI brainlesion workshop, Springer, pp 154–167

  35. Clark MC, Hall LO, Goldgof DB, Velthuizen R, Murtagh FR, Silbiger MS (1998) Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging 17(2):187–201

    Article  Google Scholar 

  36. Colmeiro RR, Verrastro C, Grosges T (2017) Multimodal brain tumor segmentation using 3d convolutional networks. In: International MICCAI brainlesion workshop, Springer, pp 226–240

  37. Cordier N, Menze B, Delingette H, Ayache N (2013) Patch-based segmentation of brain tissues

  38. Corso JJ, Sharon E, Dube S, El-Saden S, Sinha U, Yuille A (2008) Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE Trans Med Imaging 27(5):629–640

    Article  Google Scholar 

  39. Cuadra MB, Pollo C, Bardera A, Cuisenaire O, Villemure JG, Thiran JP (2004) Atlas-based segmentation of pathological mr brain images using a model of lesion growth. IEEE Trans Med Imaging 23(10):1301–1314

    Article  Google Scholar 

  40. Dai L, Li T, Shu H, Zhong L, Shen H, Zhu H (2018) Automatic brain tumor segmentation with domain adaptation. In: International MICCAI brainlesion workshop, Springer, pp 380–392

  41. Dera D, Raman F, Bouaynaya N, Fathallah-Shaykh HM (2016) Interactive semi-automated method using non-negative matrix factorization and level set segmentation for the brats challenge. Glioma. Multiple sclerosis, stroke and traumatic brain injuries, Springer, International workshop on brainlesion, pp 195–205

    Google Scholar 

  42. Dieleman S, Schlter J, Raffel C, Olson E, Snderby SK, Nouri D, et al. (2015) Lasagne: First release. https://doi.org/10.5281/zenodo.27878

  43. Dong H, Supratak A, Mai L, Liu F, Oehmichen A, Yu S, Guo Y (2017a) Tensorlayer: a versatile library for efficient deep learning development. In: Proceedings of the 25th ACM international conference on multimedia, pp 1201–1204

  44. Dong H, Yang G, Liu F, Mo Y, Guo Y (2017b) Automatic brain tumor detection and segmentation using u-net based fully convolutional networks. In: Annual conference on medical image understanding and analysis, Springer, pp 506–517

  45. Doyle S, Vasseur F, Dojat M, Forbes F (2013) Fully automatic brain tumor segmentation from multiple mr sequences using hidden markov fields and variational em. Procs NCI-MICCAI BraTS pp 18–22

  46. Ellwaa A, Hussein A, AlNaggar E, Zidan M, Zaki M, Ismail MA, Ghanem NM (2016) Brain tumor segmantation using random forest trained on iteratively selected patients. Glioma. Multiple sclerosis, stroke and traumatic brain injuries, Springer, International workshop on brainlesion, pp 129–137

    Google Scholar 

  47. Feng X, Meyer C (2017) Patch-based 3d u-net for brain tumor segmentation. In: International conference on medical image computing and computer-assisted intervention (MICCAI)

  48. Feng X, Tustison N, Meyer C (2018) Brain tumor segmentation using an ensemble of 3d u-nets and overall survival prediction using radiomic features. In: International MICCAI brainlesion workshop, Springer, pp 279–288

  49. Festa J, Pereira S, Mariz JA, Sousa N, Silva CA (2013) Automatic brain tumor segmentation of multi-sequence mr images using random decision forests. Proc NCI-MICCAI BRATS 1:23–26

    Google Scholar 

  50. Geremia E, Menze BH, Ayache N, et al. (2012) Spatial decision forests for glioma segmentation in multi-channel mr images. MICCAI challenge on multimodal brain tumor segmentation 34

  51. Goetz M, Weber C, Bloecher J, Stieltjes B, Meinzer HP, Maier-Hein K (2014) Extremely randomized trees based brain tumor segmentation. Proceeding of BRATS challenge-MICCAI pp 006–011

  52. Goyal B, Agrawal S, Sohi B (2018) Noise issues prevailing in various types of medical images. Biomed Pharmacol J 11(3):1227

    Article  Google Scholar 

  53. Guo X, Schwartz L, Zhao B (2013) Semi-automatic segmentation of multimodal brain tumor using active contours. Multimodal brain tumor segmentation 27

  54. Hamamci A, Unal G (2012) Multimodal brain tumor segmentation using the tumor-cut method on the brats dataset. Proc MICCAI-BRATS pp 19–23

  55. Hamamci A, Kucuk N, Karaman K, Engin K, Unal G (2011) Tumor-cut: segmentation of brain tumors on contrast enhanced mr images for radiosurgery applications. IEEE Trans Med Imaging 31(3):790–804

    Article  Google Scholar 

  56. Havaei M, Dutil F, Pal C, Larochelle H, Jodoin PM (2015) A convolutional neural network approach to brain tumor segmentation. In: BrainLes 2015, Springer, pp 195–208

  57. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Article  Google Scholar 

  58. Healthcareplex (2016 (accessed April 10, 2020)) CT Scan vs. MRI. https://healthcareplex.com/mri-vs-ct-scan/

  59. Hopkins J (2019 (accessed April 6, 2020)) Health. https://www.hopkinsmedicine.org/health/conditions-and-diseases/basics-of-brain-tumors

  60. Hu X, Li H, Zhao Y, Dong C, Menze BH, Piraud M (2018a) Hierarchical multi-class segmentation of glioma images using networks with multi-level activation function. In: International MICCAI brainlesion workshop, Springer, pp 116–127

  61. Hu Y, Xia Y (2017) 3d deep neural network-based brain tumor segmentation using multimodality magnetic resonance sequences. In: International MICCAI brainlesion workshop, Springer, pp 423–434

  62. Hu Y, Liu X, Wen X, Niu C, Xia Y (2018b) Brain tumor segmentation on multimodal mr imaging using multi-level upsampling in decoder. In: International MICCAI brainlesion workshop, Springer, pp 168–177

  63. Hua R, Huo Q, Gao Y, Sun Y, Shi F (2018) Multimodal brain tumor segmentation using cascaded v-nets. In: International MICCAI brainlesion workshop, Springer, pp 49–60

  64. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

  65. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2017) Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge. In: International MICCAI brainlesion workshop, Springer, pp 287–297

  66. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2018) No new-net. In: International MICCAI brainlesion workshop, Springer, pp 234–244

  67. Islam M, Ren H (2017) Multi-modal pixelnet for brain tumor segmentation. In: International MICCAI brainlesion workshop, Springer, pp 298–308

  68. Islam M, Jose VJM, Ren H (2018) Glioma prognosis: Segmentation of the tumor and survival prediction using shape, geometric and clinical information. In: International MICCAI brainlesion workshop, Springer, pp 142–153

  69. Janssen PM, Hoff EI (2012) Teaching neuroimages: Subacute intracerebral hemorrhage mimicking brain tumor. Neurology 79(21):e183–e183

    Article  Google Scholar 

  70. Jesson A, Arbel T (2017) Brain tumor segmentation using a 3d fcn with multi-scale loss. In: International MICCAI brainlesion workshop, Springer, pp 392–402

  71. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia, pp 675–678

  72. Jungo A, McKinley R, Meier R, Knecht U, Vera L, Pérez-Beteta J, Molina-García D, Pérez-García VM, Wiest R, Reyes M (2017) Towards uncertainty-assisted brain tumor segmentation and survival prediction. In: International MICCAI brainlesion workshop, Springer, pp 474–485

  73. Kamnitsas K, Ferrante E, Parisot S, Ledig C, Nori AV, Criminisi A, Rueckert D, Glocker B (2016) Deepmedic for brain tumor segmentation. In: International workshop on Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries, Springer, pp 138–149

  74. Kamnitsas K, Bai W, Ferrante E, McDonagh S, Sinclair M, Pawlowski N, Rajchl M, Lee M, Kainz B, Rueckert D, et al. (2017) Ensembles of multiple models and architectures for robust brain tumour segmentation. In: International MICCAI brainlesion workshop, Springer, pp 450–462

  75. Kao PY, Ngo T, Zhang A, Chen JW, Manjunath B (2018) Brain tumor segmentation and tractographic feature extraction from structural mr images for overall survival prediction. In: International MICCAI brainlesion workshop, Springer, pp 128–141

  76. Kermi A, Mahmoudi I, Khadir MT (2018) Deep convolutional neural networks using u-net for automatic brain tumor segmentation in multimodal mri volumes. In: International MICCAI brainlesion workshop, Springer, pp 37–48

  77. Kim G (2017) Brain tumor segmentation using deep fully convolutional neural networks. In: International MICCAI brainlesion workshop, Springer, pp 344–357

  78. Kleesiek J, Biller A, Urban G, Kothe U, Bendszus M, Hamprecht F (2014) Ilastik for multi-modal brain tumor segmentation. Proceedings MICCAI BraTS (brain tumor segmentation challenge) pp 12–17

  79. Kori A, Soni M, Pranjal B, Khened M, Alex V, Krishnamurthi G (2018) Ensemble of fully convolutional neural network for brain tumor segmentation from magnetic resonance images. In: International MICCAI brainlesion workshop, Springer, pp 485–496

  80. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  81. Kwon D, Akbari H, Da X, Gaonkar B, Davatzikos C (2014) Multimodal brain tumor image segmentation using glistr. MICCAI brain tumor segmentation (BraTS) challenge manuscripts pp 18–19

  82. Lachinov D, Vasiliev E, Turlapov V (2018) Glioma segmentation with cascaded unet. In: International MICCAI brainlesion workshop, Springer, pp 189–198

  83. Le Folgoc L, Nori AV, Ancha S, Criminisi A (2016) Lifted auto-context forests for brain tumour segmentation. Glioma. Multiple sclerosis, stroke and traumatic brain injuries, Springer, International workshop on brainlesion, pp 171–183

    Google Scholar 

  84. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  85. Lee J, Kim E, Lee S, Lee J, Yoon S (2019) Ficklenet: Weakly and semi-supervised semantic image segmentation using stochastic inference. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5267–5276

  86. Lefkovits L, Lefkovits S, Szilágyi L (2016) Brain tumor segmentation with optimized random forest. Glioma. Multiple sclerosis, stroke and traumatic brain injuries, Springer, International workshop on brainlesion, pp 88–99

    Google Scholar 

  87. Li Y, Shen L (2017) Deep learning based multimodal brain tumor diagnosis. In: International MICCAI brainlesion workshop, Springer, pp 149–158

  88. Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision, pp 2980–2988

  89. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  90. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  91. Lopez MM, Ventura J (2017) Dilated convolutions for brain tumor segmentation in mri scans. In: International MICCAI brainlesion workshop, Springer, pp 253–262

  92. Ma J, Yang X (2018) Automatic brain tumor segmentation by exploring the multi-modality complementary information and cascaded 3d lightweight cnns. In: International MICCAI brainlesion workshop, Springer, pp 25–36

  93. Maier O, Wilms M, Handels H (2015) Image features for brain lesion segmentation using random forests. In: BrainLes 2015, Springer, pp 119–130

  94. Marcinkiewicz M, Nalepa J, Lorenzo PR, Dudzik W, Mrukwa G (2018) Segmenting brain tumors from mri using cascaded multi-modal u-nets. In: International MICCAI brainlesion workshop, Springer, pp 13–24

  95. McKinley R, Wepfer R, Gundersen T, Wagner F, Chan A, Wiest R, Reyes M (2016) Nabla-net: A deep dag-like convolutional architecture for biomedical image segmentation. Glioma. Multiple sclerosis, stroke and traumatic brain injuries, Springer, International workshop on brainlesion, pp 119–128

    Google Scholar 

  96. McKinley R, Jungo A, Wiest R, Reyes M (2017) Pooling-free fully convolutional networks with dense skip connections for semantic segmentation, with application to brain tumor segmentation. In: International MICCAI brainlesion workshop, Springer, pp 169–177

  97. McKinley R, Meier R, Wiest R (2018) Ensembles of densely-connected cnns with label-uncertainty for brain tumor segmentation. In: International MICCAI brainlesion workshop, Springer, pp 456–465

  98. Media H (2004 (accessed April 10, 2020)) CT Scan vs. MRI. https://www.healthline.com/health/ct-scan-vs-mri/

  99. Mehta R, Arbel T (2018) 3d u-net for brain tumour segmentation. In: International MICCAI brainlesion workshop, Springer, pp 254–266

  100. Meier R, Bauer S, Slotboom J, Wiest R, Reyes M (2013) A hybrid model for multimodal brain tumor segmentation. Multimodal Brain Tumor Segm 31:31–37

    Google Scholar 

  101. Meier R, Bauer S, Slotboom J, Wiest R, Reyes M (2014) Appearance-and context-sensitive features for brain tumor segmentation. Proceedings of MICCAI BRATS Challenge pp 020–026

  102. Meier R, Karamitsou V, Habegger S, Wiest R, Reyes M (2015) Parameter learning for crf-based tissue segmentation of brain tumors. In: BrainLes 2015, Springer, pp 156–167

  103. Meier R, Knecht U, Wiest R, Reyes M (2016) Crf-based brain tumor segmentation: alleviating the shrinking bias. In: International workshop on brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries, Springer, pp 100–107

  104. Menze BH, Geremia E, Ayache N, Szekely G (2012) Segmenting glioma in multi-modal images using a generative-discriminative model for brain lesion segmentation. Proc MICCAI-BRATS (Multimodal Brain Tumor Segmentation Challenge) 8

  105. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R et al (2014) The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans Med Imaging 34(10):1993–2024

    Article  Google Scholar 

  106. Myronenko A (2018) 3d mri brain tumor segmentation using autoencoder regularization. In: International MICCAI brainlesion workshop, Springer, pp 311–320

  107. Nuechterlein N, Mehta S (2019) 3d-espnet with pyramidal refinement for volumetric brain tumor image segmentation. brainles 2018. Springer LNCS 11384:245–253

    Google Scholar 

  108. Nvidia (2020 (accessed April 28, 2020)) Nvidia. https://www.nvidia.com/en-in/

  109. Nyúl LG, Udupa JK (1999) On standardizing the mr image intensity scale. Magn Reson Med: An Official J Int Soc Magn Reson Med 42(6):1072–1081

    Article  Google Scholar 

  110. Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  111. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al. (2019) Pytorch: An imperative style, high-performance deep learning library. In: Advances in neural information processing systems, pp 8024–8035

  112. Pawar K, Chen Z, Shah NJ, Egan G (2017) Residual encoder and convolutional decoder neural network for glioma segmentation. In: International MICCAI brainlesion workshop, Springer, pp 263–273

  113. Pereira S, Pinto A, Alves V, Silva CA (2015) Deep convolutional neural networks for the segmentation of gliomas in multi-sequence mri. In: BrainLes 2015, Springer, pp 131–143

  114. Phophalia A, Maji P (2017) Multimodal brain tumor segmentation using ensemble of forest method. In: International MICCAI brainlesion workshop, Springer, pp 159–168

  115. Piedra EAR, Ellingson BM, Taira RK, El-Saden S, Bui AA, Hsu W (2016) Brain tumor segmentation by variability characterization of tumor boundaries. Glioma. Multiple sclerosis, stroke and traumatic brain injuries, Springer, International workshop on brainlesion, pp 206–216

    Google Scholar 

  116. Pourreza R, Zhuge Y, Ning H, Miller R (2017) Brain tumor segmentation in mri scans using deeply-supervised neural networks. In: International MICCAI brainlesion workshop, Springer, pp 320–331

  117. Prastawa M, Bullitt E, Ho S, Gerig G (2004) A brain tumor segmentation framework based on outlier detection. Med Image Anal 8(3):275–283

    Article  Google Scholar 

  118. Puch S, Sánchez I, Hernández A, Piella G, Prćkovska V (2019) Global planar convolutions for improved context aggregation in brain tumor segmentation. brainles 2018. Springer LNCS 11384:393–405

    Google Scholar 

  119. Puybareau E, Tochon G, Chazalon J, Fabrizio J (2018) Segmentation of gliomas and prediction of patient overall survival: a simple and fast procedure. In: International MICCAI brainlesion workshop, Springer, pp 199–209

  120. Radiology AC (1999 (accessed April 10, 2020)) Brain Tumor Treatment. https://www.radiologyinfo.org/

  121. Rajendran A, Dhanasekaran R (2012) Brain tumor segmentation on mri brain images with fuzzy clustering and gvf snake model. Int J Comput Commun Control 7(3):530–539

    Article  Google Scholar 

  122. Randhawa RS, Modi A, Jain P, Warier P (2016) Improving boundary classification for brain tumor segmentation and longitudinal disease progression. Glioma. Multiple sclerosis, stroke and traumatic brain injuries, Springer, International workshop on brainlesion, pp 65–74

    Google Scholar 

  123. Raval M, Rajput S, Roy M, Agravat R (2021) Glioblastoma multiforme patient survival prediction

  124. Raviv TR, Leemput KV, Menze BH (2012) Multi-modal brain tumor segmentation via latent atlases. Proceeding MICCAIBRATS 64

  125. Reza S, Iftekharuddin K (2013) Multi-class abnormal brain tissue segmentation using texture. Multimodal Brain Tumor Segmentation 38

  126. Reza S, Iftekharuddin K (2014) Improved brain tumor tissue segmentation using texture features. Proceedings MICCAI BraTS (brain tumor segmentation challenge) pp 27–30

  127. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241

  128. Saha R, Phophalia A, Mitra SK (2016) Brain tumor segmentation from multimodal mr images using rough sets. In: International conference on computer vision, graphics, and image processing, Springer, pp 133–144

  129. Serrano-Rubio J, Everson R (2019) Brain tumour segmentation method based on supervoxels and sparse dictionaries. brainles 2018. Springer LNCS 11384:210–221

    Google Scholar 

  130. Shaikh M, Anand G, Acharya G, Amrutkar A, Alex V, Krishnamurthi G (2017) Brain tumor segmentation using dense fully convolutional neural network. In: International MICCAI brainlesion workshop, Springer, pp 309–319

  131. Shboul ZA, Vidyaratne L, Alam M, Iftekharuddin KM (2017) Glioblastoma and survival prediction. In: International MICCAI brainlesion workshop, Springer, pp 358–368

  132. Shin HC (2012) Hybrid clustering and logistic regression for multi-modal brain tumor segmentation. In: Proceedings of workshops and challanges in medical image computing and computer-assisted intervention (MICCAI12)

  133. Shridhar K, Laumann F, Liwicki M (2019) A comprehensive guide to bayesian convolutional neural network with variational inference. arXiv preprint arXiv:190102731

  134. Soltaninejad M, Zhang L, Lambrou T, Yang G, Allinson N, Ye X (2017) Mri brain tumor segmentation and patient survival prediction using random forests and fully convolutional networks. In: International MICCAI brainlesion workshop, Springer, pp 204–215

  135. Song B, Chou CR, Chen X, Huang A, Liu MC (2016) Anatomy-guided brain tumor segmentation and classification. Glioma. Multiple sclerosis, stroke and traumatic brain injuries, Springer, International workshop on brainlesion, pp 162–170

    Google Scholar 

  136. Stawiaski J (2018) A pretrained densenet encoder for brain tumor segmentation. In: International MICCAI brainlesion workshop, Springer, pp 105–115

  137. Subbanna N, Arbel T (2012) Probabilistic gabor and markov random fields segmentation of brain tumours in mri volumes. In: Proceedings of MICCAI brain tumor segmentation challenge (BRATS) pp 28–31

  138. Sudre CH, Li W, Vercauteren T, Ourselin S, Cardoso MJ (2017) Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, Springer, pp 240–248

  139. Sun L, Zhang S, Luo L (2018) Tumor segmentation and survival prediction in glioma with deep learning. In: International MICCAI brainlesion workshop, Springer, pp 83–93

  140. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  141. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826

  142. Targ S, Almeida D, Lyman K (2016) Resnet in resnet: Generalizing residual architectures. arXiv preprint arXiv:160308029

  143. Taylor T, John N, Buendia P, Ryan M (2013) Map-reduce enabled hidden markov models for high throughput multimodal brain tumor segmentation. Multimodal Brain Tumor Segmentation 43

  144. Tomas-Fernandez X, Wareld S (2012) Automatic brain tumor segmentation based on a coupled global-local intensity bayesian model. MICCAI Challenge on Multimodal Brain Tumor Segmentation 34

  145. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4itk: improved n3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320

    Article  Google Scholar 

  146. Urban G, Bendszus M, Hamprecht F, Kleesiek J (2014) Multi-modal brain tumor segmentation using deep convolutional neural networks. MICCAI BraTS (brain tumor segmentation) challenge Proceedings, winning contribution pp 31–35

  147. Van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RG, Fillion-Robin JC, Pieper S, Aerts HJ (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107

    Article  Google Scholar 

  148. Wang G, Li W, Ourselin S, Vercauteren T (2017) Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: International MICCAI brainlesion workshop, Springer, pp 178–190

  149. Wang G, Li W, Ourselin S, Vercauteren T (2018) Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation. In: International MICCAI brainlesion workshop, Springer, pp 61–72

  150. Weninger L, Rippel O, Koppers S, Merhof D (2018) Segmentation of brain tumors and patient survival prediction: Methods for the brats 2018 challenge. In: International MICCAI brainlesion workshop, Springer, pp 3–12

  151. Xiao Y, Hu J (2012) Hierarchical random walker for multimodal brain tumor segmentation. MICCAI challenge on multimodal brain tumor segmentation

  152. Xu Y, Gong M, Fu H, Tao D, Zhang K, Batmanghelich K (2018) Multi-scale masked 3-d u-net for brain tumor segmentation. In: International MICCAI brainlesion workshop, Springer, pp 222–233

  153. Yao H, Zhou X, Zhang X (2019) Automatic segmentation of brain tumor using 3d se-inception networks with residual connections. brainles 2018. Springer LNCS 11384:346–357

    Google Scholar 

  154. Zeng K, Bakas S, Sotiras A, Akbari H, Rozycki M, Rathore S, Pati S, Davatzikos C (2016) Segmentation of gliomas in pre-operative and post-operative multimodal magnetic resonance imaging volumes based on a hybrid generative-discriminative framework. Glioma. Multiple sclerosis, stroke and traumatic brain injuries, Springer, International workshop on brainlesion, pp 184–194

    Google Scholar 

  155. Zhao L, Wu W, Corso JJ (2012) Brain tumor segmentation based on gmm and active contour method with a model-aware edge map. BRATS MICCAI pp 19–23

  156. Zhao L, Sarikaya D, Corso JJ (2013) Automatic brain tumor segmentation with mrf on supervoxels. Multimodal Brain Tumor Segmentation 51

  157. Zhao X, Wu Y, Song G, Li Z, Fan Y, Zhang Y (2016) Brain tumor segmentation using a fully convolutional neural network with conditional random fields. Glioma. Multiple sclerosis, stroke and traumatic brain injuries, Springer, International workshop on brainlesion, pp 75–87

    Google Scholar 

  158. Zhao X, Wu Y, Song G, Li Z, Zhang Y, Fan Y (2017) 3d brain tumor segmentation through integrating multiple 2d fcnns. In: International MICCAI brainlesion workshop, Springer, pp 191–203

  159. Zhou C, Chen S, Ding C, Tao D (2018) Learning contextual and attentive information for brain tumor segmentation. In: International MICCAI brainlesion workshop, Springer, pp 497–507

  160. Zhou F, Li T, Li H, Zhu H (2017) Tpcnn: two-phase patch-based convolutional neural network for automatic brain tumor segmentation and survival prediction. In: International MICCAI brainlesion workshop, Springer, pp 274–286

  161. Zikic D, Glocker B, Konukoglu E, Criminisi A, Demiralp C, Shotton J, Thomas OM, Das T, Jena R, Price SJ (2012a) Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel mr. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 369–376

  162. Zikic D, Glocker B, Konukoglu E, Shotton J, Criminisi A, Ye D, Demiralp C, Thomas O, Das T, Jena R, et al. (2012b) Context-sensitive classification forests for segmentation of brain tumor tissues. In: Proc. MICCAI-BRATS, pp 22–30

  163. Zikic D, Ioannou Y, Brown M, Criminisi A (2014) Segmentation of brain tumor tissues with convolutional neural networks. Proceedings MICCAI-BRATS pp 36–39

Download references

Acknowledgements

The authors would like to thank NVIDIA Corporation for donating the Quadro K5200 and Quadro P5000 GPU used for this research, Dr. Krutarth Agravat (Medical Officer, Essar Ltd) for clearing our doubts related to medical concepts, Po-yu Kao, and Ujjawal Baid for their continuous support and help, Dr. Spyros and his entire team for BraTS dataset. The authors acknowledge continuous support from Professor Sanjay Chaudhary, Professor N. Padmanabhan, and Professor Manjunath Joshi for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupal R. Agravat.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agravat, R.R., Raval, M.S. A Survey and Analysis on Automated Glioma Brain Tumor Segmentation and Overall Patient Survival Prediction. Arch Computat Methods Eng 28, 4117–4152 (2021). https://doi.org/10.1007/s11831-021-09559-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09559-w

Navigation