Skip to main content
Log in

Restoration of Single pixel imaging in atmospheric turbulence by Fourier filter and CGAN

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

As a novel computational imaging (CI) method, single pixel imaging (SPI) can obtain the spatial information of the target object with only a single-pixel detector, especially the SPI with Fourier basis has higher imaging efficiency and quality. However, Fourier single-pixel imaging (FSI) will still be affected in atmospheric turbulence, imaging will be unstable, and image quality will decrease. This paper first uses the phase screen method to simulate atmospheric turbulence, and then in the FSI process, the Fourier coefficients are processed to filter noise in the Fourier domain to reduce the impact of turbulence on imaging. Then we use the conditional generative adversarial network (CGAN) of deep learning methods to further improve the clarity and quality of the restored image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Y. Cai, S.Y. Zhu, Ghost imaging with incoherent and partially coherent light radiation. Phys. Rev. E Statal Nonlinear Soft Matter Phys. 71(5 Pt 2), 056607 (2005)

    Article  ADS  Google Scholar 

  2. T.B. Pittman, Y.H. Shih, D.V. Strekalov et al., Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52(5), R3429 (1995)

    Article  ADS  Google Scholar 

  3. R.S. Bennink, S.J. Bentley, R.W. Boyd, “Two-Photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89(11), 113601 (2002)

    Article  ADS  Google Scholar 

  4. Y. Bromberg, O. Katz, Y. Silberberg, Ghost imaging with a single detector. Phys. Rev. A 79(5), 1744–1747 (2008)

    Google Scholar 

  5. H. Shapiro, Computational ghost imaging. IThK7. 6, 061802 (2009)

    Google Scholar 

  6. F. Ferri, D. Magatti, L.A. Lugiato et al., Differential ghost imaging. Phys. Rev. Lett. 104(25), 253603 (2010)

    Article  ADS  Google Scholar 

  7. S.X. Guo, C. Zhang, J.S. Cao et al., Object reconstruction by compressive sensing based normalized ghost imaging. Opt. Precis. Eng. 23(1), 288–294 (2015)

    Article  Google Scholar 

  8. M.F. Duarte, M.A. Davenport, D. Takhar et al., Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)

    Article  ADS  Google Scholar 

  9. G. Futia, P. Schlup, Spatially-chirped modulation imaging of absorbtion and fluorescent objects on single-element optical detector. Opt. Express 19, 1626–1640 (2011)

    Article  ADS  Google Scholar 

  10. L. Bian, J. Suo, G. Situ et al., Multispectral imaging using a single bucket detector. Rep 6, 24752 (2016)

    Google Scholar 

  11. J. Hahn, C. Debes, M. Leigsnering et al., Compressive sensing and adaptive direct sampling in hyperspectral imaging. Digit. Signal Process. 26, 113–126 (2014)

    Article  Google Scholar 

  12. M.P. Edgar, G.M. Gibson, R.W. Bowman et al., Simultaneous real-time visible and infrared video with single-pixel detectors. Sci. Rep. 5, 10669 (2015)

    Article  ADS  Google Scholar 

  13. C.M. Watts, D. Shrekenhamer, J. Montoya et al., Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photon. 8(8), 605–609 (2014)

    Article  ADS  Google Scholar 

  14. G.M. Gibson, B. Sun, M.P. Edgar et al., Real-time imaging of methane gas leaks using a single-pixel camera. Opt. Express 25(4), 2998 (2017)

    Article  ADS  Google Scholar 

  15. J. Peng, M. Yao, J. Chen et al., Micro-tomography via single-pixel imaging. Opt. Express 26(24), 31094–31105 (2018)

    Article  ADS  Google Scholar 

  16. Y. Zhang, Y. Wang, Computational lensless ghost imaging in a slant path non-Kolmogorov turbulent atmosphere. Optik Int. J. Light Electron Opt. 123(15), 1360–1363 (2012)

    Article  Google Scholar 

  17. D.J. Higley, D.G. Winters, G.L. Futia et al., Theory of diffraction effects in spatial frequency-modulated imaging. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 29(12), 2579–2590 (2012)

    Article  ADS  Google Scholar 

  18. J. Cheng, J. Lin, Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere. Phys. Rev. A 87(4), 1–8 (2013)

    Google Scholar 

  19. Z. Yang, L. Zhao, X. Zhao, W. Qin, J. Li, Lensless ghost imaging through the strongly scattering medium. Chin. Phys. B 25(2), 024202 (2016)

    Article  Google Scholar 

  20. L. Tang, Y. Bai, C. Duan, Effects of incident angles on reflective ghost imaging through atmospheric turbulence. Laser Phys. 28(1), 015201 (2018)

    Article  ADS  Google Scholar 

  21. Z. Zhang, X. Wang, J. Zhong, Fast Fourier single-pixel imaging using binary illumination. Sci. Rep. 7(1), 1–9 (2016)

    Google Scholar 

  22. J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  23. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015)

    Article  ADS  Google Scholar 

  24. Y. Shih, The physics of ghost imaging. 2008.

  25. L.M. Benjamin, Restoration of turbulence-distorted images. Josa/57/3/josa Pdf 57(3), 293 (1967)

    Google Scholar 

  26. J.A. Fleck, J.R. Morris, M.D. Feit, Time-dependent propagation of high energy laser beams through the atmosphere. Appl. Phys. 10(2), 129–160 (1976)

    Article  ADS  Google Scholar 

  27. R. Bracewell, The Fourier transform and its applications. Am. J. Phys. 34, 1396–1405 (2002)

    Google Scholar 

  28. H. Dong, P. Neekhara, C. Wu, Y. Guo, Unsupervised image-to-image translation with generative adversarial networks. arXiv:1701.02676 [cs.CV] (2017)

  29. M. Uehara, I. Sato, M. Suzuki et al., Generative adversarial nets from a density ratio estimation perspective. arXiv:1610.02920 [stat.ML] (2016)

  30. O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image segmentation (Springer, 2015)

  31. G.E. Dahl, T.N. Sainath, G.E. Hinton, Geoffrey E. Improving deep neural networks for LVCSR using rectified linear units and dropout. 2013.

  32. L. Deng, The MNIST database of handwritten digit images for machine learning research [Best of the Web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  ADS  Google Scholar 

  33. Z. Zhang, P. Luo, C.C. Loy et al., Facial landmark detection by deep multi-task learning (Springer, 2014)

  34. Theano: A Python framework for fast computation of mathematical expressions. 2016.

Download references

Funding

This research was funded by Natural Science Foundation of Shanghai (Grant No. 18ZR1425800) and the National Natural Science Foundation of China (Grant No. 61875125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bian Zhixiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leihong, Z., Zhixiang, B., Hualong, Y. et al. Restoration of Single pixel imaging in atmospheric turbulence by Fourier filter and CGAN. Appl. Phys. B 127, 45 (2021). https://doi.org/10.1007/s00340-021-07596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07596-8

Navigation