Skip to main content
Log in

On a question of Teissier

  • Original Research
  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

Using a result of Demailly and Pham on log canonical thresholds, we give an upper bound for polar invariants from a question of Teissier on hypersurface singularities. This provides a weaker alternative upper bound compared to the one conjectured by Teissier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. This paper was written after we got interested from [12] and before the appearance of [10].

  2. But our method does not deal with the Arnold exponent directly. It will be interesting if the method of this paper can be further combined with the complex analytic aspect of the Arnold exponent = the minimal exponent.

  3. The same argument can be also checked using [4, Thm. 10.10] and the definition of \(\theta (f)\).

References

  1. Arnold, V., Gusein-Zade, S., Varchenko, A.: Singularities of differentiable maps. Volume 2. Monodromy and asymptotics of integrals, Reprint of the 1988 translation of 1984 book in Russian, Birkhäuser/Springer (2012)

  2. Bivià-Ausina, C.: Log canonical threshold and diagonal ideals. Proc. Am. Math. Soc. 145(5), 1905–1916 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bivià-Ausina, C., Fukui, T.: Mixed Łojasiewicz exponents and log canonical thresholds of ideals. J. Pure Appl. Algebra 220(1), 223–245 (2016)

    Article  MathSciNet  Google Scholar 

  4. Boucksom, S.:Singularities of plurisubharmonic functions and multiplier ideals, Lecture notes available on the author’s website

  5. Briançon, J., Skoda, H.: Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de \({\mathbf{C}}^n\), C. R. Acad. Sci. Paris Sér. A 278, 949–951 (1974)

  6. Demailly, J.-P.: Monge–Ampère Operators, Lelong Numbers and Intersection Theory, Complex Analysis and Geometry, 115–193. Univ. Ser. Math, Plenum, New York (1993)

    Google Scholar 

  7. Demailly, J.-P.: Estimates on Monge–Ampère operators derived from a local algebra inequality, Complex analysis and digital geometry, 131–143, Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., 86, Uppsala Universitet (2009)

  8. Demailly, J.-P.: Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1. International Press, Somerville, MA; Higher Education Press, Beijing (2012). (See also July 2011 version from the author’s website. )

  9. Demailly, J.-P., Pham, H.H.: A sharp lower bound for the log canonical threshold. Acta Math. 212(1), 1–9 (2014)

    Article  MathSciNet  Google Scholar 

  10. Dirks, B., Mustaţǎ, M.: Minimal exponents of hyperplane sections: a conjecture of Teissier. arXiv:2008.10345

  11. Ein, L., Lazarsfeld, R., Smith, K., Varolin, D.: Jumping coefficients of multiplier ideals. Duke Math. J. 123, 469–506 (2004)

    Article  MathSciNet  Google Scholar 

  12. Elduque, E., Mustaţǎ, M.: On a conjecture of Teissier: the case of log canonical thresholds. arXiv:2005.03803

  13. Hoang Hiep Pham, Presentation at 2019 Hayama symposium

  14. Kim, D.: Equivalence of plurisubharmonic singularities and Siu-type metrics. Monatsh. Math. 178(1), 85–95 (2015)

    Article  MathSciNet  Google Scholar 

  15. Kim, D., Rashkovskii, A.: Higher Lelong numbers and convex geometry. arXiv:1803.07948 (to appear in J. Geom. Anal)

  16. Kim, D., Rashkovskii, A.: Asymptotic multiplicities and Monge–Ampère masses (with an appendix by Sébastien Boucksom). arXiv:2006.15929

  17. Kollár, J.: Singularities of pairs, Algebraic geometry—Santa Cruz 1995, 221–287, Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI (1997)

  18. Lazarsfeld, R.: Positivity in Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., pp. 48–49. Springer, Berlin (2004)

  19. Lejeune-Jalabert, M., Teissier, B.:Clôture intégrale des idéaux et équisingularité, Ann. Fac. Sci. Toulouse Math. (6) 17 4, 781–859 (2008)

  20. Lichtin, B.: A connection between polar invariants and roots of the Bernstein–Sato polynomial, Singularities, Part 2 (Arcata, Calif., 1981), 145–154, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI(1983)

  21. Loeser, F.: Exposant d’Arnold et sections planes. C. R. Acad. Sci. Paris Sér. I Math. 298(19), 485–488 (1984)

  22. Malgrange, B.:Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. (4) 7, 405–430 (1974)

  23. Malgrange,B.: Le polynôme de Bernstein d’une singularité isolée, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974), pp. 98–119. Lecture Notes in Math., Vol. 459. Springer, Berlin (1975)

  24. Mustaţǎ, M., Popa, M.: Hodge ideals for \({\mathbf{Q}}\)- divisors: birational approach. J. Éc. polytech. Math. 6, 283–328 (2019)

    Article  MathSciNet  Google Scholar 

  25. Mustaţǎ,M., Popa,M.: Hodge ideals for\({\mathbf{Q}}\)- divisors, V-filtration, and minimal exponent, Forum Math. Sigma 8 (2020), Paper No. e19

  26. Popescu-Pampu, P.: How Teissier mixed multiplicities, Slides of a presentation at Conference “Singular Landscapes.” Aussois, France (2015)

  27. Rashkovskii, A.: An extremal problem for generalized Lelong numbers. Math. Z. 266(2), 345–362 (2010)

    Article  MathSciNet  Google Scholar 

  28. Rashkovskii, A.: Multi-circled singularities, Lelong numbers, and integrability index. J. Geom. Anal. 23(4), 1976–1992 (2013)

    Article  MathSciNet  Google Scholar 

  29. Rashkovskii, A.: Extremal cases for the log canonical threshold. C. R. Math. Acad. Sci. Paris 353(1), 21–24 (2015)

    Article  MathSciNet  Google Scholar 

  30. Saito, M.: On b-function, spectrum and rational singularity. Math. Ann. 295(1), 51–74 (1993)

    Article  MathSciNet  Google Scholar 

  31. Siu, Y.-T.: Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math. 27, 53–156 (1974)

    Article  MathSciNet  Google Scholar 

  32. Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972), pp. 285–362. Astérisque, Nos. 7 et 8, Soc. Math. France, Paris, (1973)

  33. Teissier,B.: Variétés polaires. I. Invariants polaires des singularités d’hypersurfaces, Invent. Math. 40 (1977), no. 3, 267–292

  34. Teissier,B.: Polyèdre de Newton jacobien et équisingularité, Seminar on Singularities (Paris, 1976/1977), pp. 193–221, Publ. Math. Univ. Paris VII, 7, Univ. Paris VII, Paris, 1980 : see the English version Jacobian Newton Polyhedra and equisingularity. arXiv:1203.5595

  35. Teissier, B.: Some resonances of Łojasiewicz inequalities. Wiad. Mat. 48(2), 271–284 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to Mircea Mustaţǎ and Alexander Rashkovskii for helpful comments. This research was supported by Basic Science Research Program through NRF Korea funded by the Ministry of Education (2018R1D1A1B07049683).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dano Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D. On a question of Teissier. Annali di Matematica 200, 2305–2311 (2021). https://doi.org/10.1007/s10231-021-01081-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01081-x

Keywords

Mathematics Subject Classification

Navigation