Skip to main content
Log in

Casimir pistons with generalized boundary conditions: a step forward

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this work we study the Casimir effect for massless scalar fields propagating in a piston geometry of the type \(I\times N\) where I is an interval of the real line and N is a smooth compact Riemannian manifold. Our analysis represents a generalization of previous results obtained for pistons configurations as we consider all possible boundary conditions that are allowed to be imposed on the scalar fields. We employ the spectral zeta function formalism in the framework of scattering theory in order to obtain an expression for the Casimir energy and the corresponding Casimir force on the piston. We provide explicit results for the Casimir force when the manifold N is a d-dimensional sphere and a disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Actor, A.A., Bender, I.: Casimir effect for soft boundaries. Phys. Rev. D 52, 3581 (1995)

    Article  MathSciNet  Google Scholar 

  2. Asorey, M., Ibort, A., Marmo, G.: Global theory of quantum boundary conditions and topology change. Int. J. Mod. Phys. A 20, 1001 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asorey, M., Muñoz-Castañeda, J.M.: Attractive and repulsive Casimir vacuum energy with general boundary conditions. Nucl. Phys. B 874, 852–876 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barton, G.: Casimir piston and cylinder, perturbatively. Phys. Rev. D 73, 065018 (2006)

    Article  Google Scholar 

  5. Beauregard, M., Fucci, G., Kirsten, K., Morales, P.: Casimir effect in the presence of external fields. J. Phys. A 46, 115401 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bordag, M., Elizalde, E., Kirsten, K.: Heat kernel coefficients of the Laplace operator on the \(D\)-dimensional ball. J. Math. Phys. 37, 895 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bordag, M., Geyer, B., Kirsten, K., Elizalde, E.: Zeta function determinant of the Laplace operator on the \(D\)-dimensional ball. Commun. Math. Phys. 179, 215 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Advances in the Casimir Effect. International Series of Monographs in Physics, vol. 145. Oxford University Press (2009)

  9. Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the Casimir effect. Phys. Rep. 353, 1 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bordag, M., Muñoz-Castañeda, J.M., Santamaría-Sanz, L.: Vacuum energy for generalized dirac combs at t = 0. Front. Phys. 7, 38 (2019)

    Article  Google Scholar 

  11. Bytsenko, A.A., Cognola, G., Elizalde, E.: Analytic Aspects of Quantum Fields. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  12. Casimir, H.B.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    MATH  Google Scholar 

  13. Cavalcanti, R.M.: Casimir force on a piston. Phys. Rev. D 69, 065015 (2004)

    Article  Google Scholar 

  14. Donaire, M., Muñoz-Castañeda, J.M., Nieto, L.M., Tello-Fraile, M.: Field fluctuations and Casimir energy of 1d-fermions. Symmetry 11(5), 643 (2019)

    Article  MATH  Google Scholar 

  15. Edery, A.: Multidimensional cut-off technique, odd-dimensional Epstein zeta functions and Casimir energy for massless scalar fields. J. Phys. A 39, 685 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Edery, A.: Casimir piston for massless scalar field in three dimensions. Phys. Rev. D 75, 105012 (2007)

    Article  Google Scholar 

  17. Edery, A., Marachevsky, V.N.: Compact dimensions and the Casimir effect: the Proca connection. J. High Energy Phys. 12, 035 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Elizalde, E.: Ten Physical Applications of the Spectral Zeta Function. Springer, Berlin (1995)

    MATH  Google Scholar 

  19. Elizalde, E., Odintsov, S.D., Romeo, A., Bytsenko, A.A., Zerbini, S.: Zeta Regularization Techniques with Applications. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  20. Elizalde, E., Romeo, A.: One-dimensional Casimir effect perturbed by an external field. J. Phys. A 30, 5393 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Emig, T., Graham, N., Jaffe, R.L., Kardar, M.: Phys. Rev. D 77, 025005 (2008)

    Article  Google Scholar 

  22. Fucci, G.: Casimir pistons with general boundary conditions. Nucl. Phys. B 891, 676–699 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fucci, G.: The Casimir effect for thick pistons. Int. J. Mod. Phys. A 31, 1680012 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fucci, G.: The Casimir effect for pistons with transmittal boundary conditions. Int. J. Mod. Phys. A 32, 1750182 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fucci, G., Kirsten, K.: Conical Casimir pistons with hybrid boundary conditions. J. Phys. A 44, 295403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fucci, G., Kirsten, K.: The Casmir effect for conical pistons. J. High Energy Phys. 03, 016 (2011)

    Article  MATH  Google Scholar 

  27. Fucci, G., Kirsten, K.: The Casimir effect for generalized piston geometries. Int. J. Mod. Phys. A 27, 1260008 (2012)

    Article  MATH  Google Scholar 

  28. Fucci, G., Kirsten, K.: Functional determinants and Casimir energy in higher dimensional spherically symmetric background potentials. J. Phys. A 49, 275203 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fucci, G., Kirsten, K., Morales, P.: Pistons modeled by potentials. In: Odintsov, S., Sáez-Gómez, D., Xambó, S. (eds.) Cosmology, Quantum Vacuum, and Zeta Functions, pp. 313–322. Springer, Berlin (2011)

    Chapter  Google Scholar 

  30. Galindo, A., Pascual, P.: Quantum Mechanics I. Texts and Monographs in Physics. Springer, Berlin (1990)

    Google Scholar 

  31. Gilkey, P.B.: Invariance Theory the Heat Equation and the Atiyah–Singer Index Theorem. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  32. Hertzberg, M.P., Jaffe, R.L., Kardar, M., Scardicchio, A.: Attractive Casimir forces in a closed geometry. Phys. Rev. Lett. 95, 250402 (2005)

    Article  MathSciNet  Google Scholar 

  33. Hertzberg, M.P., Jaffe, R.L., Kardar, M., Scardicchio, A.: Casimir forces in a piston geometry at zero and finite temperatures. Phys. Rev. D 76, 045016 (2007)

    Article  Google Scholar 

  34. Kenneth, O., Klich, I.: Casimir forces in a T-operator approach. Phys. Rev. B 78, 014103 (2008)

    Article  Google Scholar 

  35. Kirsten, K.: Spectral Functions in Mathematical Physics. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

  36. Kirsten, K., Fulling, S.A.: Kaluza–Klein models as pistons. Phys. Rev. D 79, 065019 (2009)

    Article  MathSciNet  Google Scholar 

  37. Li, X.-Z., Cheng, H.-B., Li, J.-M., Zhai, X.-H.: Attractive and repulsive nature of the Casimir force in a rectangular cavity. Phys. Rev. D 56, 2155 (1997)

    Article  Google Scholar 

  38. Marachevsky, V.N.: Casimir interaction of two plates inside a cylinder. Phys. Rev. D 75, 085019 (2007)

    Article  Google Scholar 

  39. Milton, K.A.: The Casimir Effect: Physical Manifestations of Zero-point Energy. World Scientific Publishing, Singapore (2001)

    Book  MATH  Google Scholar 

  40. Milton, K.A., Wagner, J., Kirsten, K.: Casimir effect for a semitransparent wedge and an annular piston. Phys. Rev. D 80, 125028 (2009)

    Article  Google Scholar 

  41. Morales, P., Kirsten, K.: Semitransparent pistons. Int. J. Mod. Phys. A25, 2196 (2010)

    Article  MATH  Google Scholar 

  42. Muñoz-Castañeda, J.M., Kirsten, K., Bordag, M.: QFT over the finite line. Heat kernel coefficients, spectral zeta functions and selfadjoint extensions. Lett. Math. Phys. 105(4), 523–549 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Plunien, G., Müller, B., Greiner, W.: The Casimir effect. Phys. Rep. 134, 87 (1986)

    Article  MathSciNet  Google Scholar 

  44. Tilma, T., Byrd, M., Sudarshan, E.C.G.: A parametrization of bipartite systems based on \(SU(4)\) Euler angles. J. Phys. A 35, 10445 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zettl, A.: Sturm–Liouville Theory. Mathematical Surveys and Monographs, vol. 121, American Mathematical Society (2005)

Download references

Acknowledgements

JMMC and KK are grateful to the Spanish Government-MINECO (MTM2014- 57129-C2-1-P) for the financial support received. JMMC is grateful and the Junta de Castilla y León (BU229P18, VA137G18 and VA057U16) for the financial support. JMMC would like to deeply acknowledge and honour all the support, the teaching, and the knowledge received from Professor Jose M. Muñoz-Porras during all his life: it is the greatest honour to be your son.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Muñoz-Castañeda.

Ethics declarations

Conflict of interest

Data sharing not applicable to this article as no datasets were generated or analysed during the current study. The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fucci, G., Kirsten, K. & Muñoz-Castañeda, J.M. Casimir pistons with generalized boundary conditions: a step forward. Anal.Math.Phys. 11, 70 (2021). https://doi.org/10.1007/s13324-021-00507-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00507-2

Keywords

Navigation