Skip to main content
Log in

Anisotropic Gaussian random fields: criteria for hitting probabilities and applications

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We develop criteria for hitting probabilities of anisotropic Gaussian random fields with associated canonical pseudo-metric given by a class of gauge functions. This yields lower and upper bounds in terms of general notions of capacity and Hausdorff measure, respectively, therefore extending the classical estimates with the Bessel–Riesz capacity and the \(\gamma \)-dimensional Hausdorff measure. We apply the criteria to a system of linear stochastic partial differential equations driven by space-time noises that are fractional in time and either white or colored in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balan, R.M., Tudor, C.A.: The stochastic heat equation with fractional-colored noise: existence of the solution. Latin Am. J. Prob. Math. Stat. 4, 57–87 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Balan, R.M., Tudor, C.A.: The stochastic wave equation with fractional noise: a random field approach. Stoch. Process. Appl. 120, 2468–2494 (2010)

    Article  MathSciNet  Google Scholar 

  3. Biermé, H., Lacaux, C., Xiao, Y.: Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields. Bull. Lond. Math. Soc. 41(2), 253–273 (2009)

    Article  MathSciNet  Google Scholar 

  4. Chatzigeorgiou, I.: Bounds on the Lambert function and their application to the outage analysis of user cooperation. IEEE Commun. Lett. 17(8), 1505–1508 (2013)

    Article  Google Scholar 

  5. Dalang, R.C., Khoshnevisan, D., Nualart, E.: Hitting probabilities with applications for systems of non-linear stochastic heat equations with additive noise. Latin Am. J. Prob. Math. Stat. 3, 231–271 (2007)

    MATH  Google Scholar 

  6. Dalang, R.C., Sanz-Solé, M.: Criteria for hitting probabilities with applications to systems of stochastic wave equations. Bernoulli 16, 1343–1368 (2010)

    Article  MathSciNet  Google Scholar 

  7. Dalang, R.C., Sanz-Solé, M.: Hitting probabilities for nonlinear systems of stochastic waves. Mem. Am. Math. Soc. 237(1120), 1–85 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Dalang, R.C., Mueller, C., Xiao, Y.: Polarity of points for Gaussian random fields. Ann. Probab. 45(6B), 4700–4751 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Dalang, R.C.: Hitting probabilities for systems of stochastic PDEs: an overview. In: Stochastic Partial Differential Equations and Related Fields, Springer Proc. Math. Stat., vol. 229, pp. 159–176. Springer, Cham (2018)

  10. Dalang, R.C., Sanz-Solé, M.: An Introduction to Stochastic Partial Differential Equations. Book in preparation

  11. Kahane, J.-P.: Some Random Series of Functions, 2nd edn. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  12. Khoshnevisan, D.: Multiparametric Processes: An Introduction to Random Fields. Springer, New York (2002)

    Book  Google Scholar 

  13. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  14. Nualart, E., Viens, F.: Hitting probabilities for general Gaussian Processes (2014). arXiv:1305.1758v2

  15. Rogers, C.A.: Hausdorff Measures. Cambridge Math Library. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  16. Sanz-Solé, M., Viles, N.: Systems of stochastic Poisson equations: hitting probabilities. Stoch. Process. Appl. 128, 1857–1888 (2018)

    Article  MathSciNet  Google Scholar 

  17. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  18. Tudor, C.A.: Analysis of Variations for Self-Similar Processes. A Stochastic Calculus Approach. Springer, Berlin (2013)

    Book  Google Scholar 

  19. Tudor, C.A., Xiao, Y.: Sample paths of the solution to the fractional-colored stochastic heat equation. Stoc. Dyn. 17, 1–20 (2017)

    Article  MathSciNet  Google Scholar 

  20. Xiao, Y. (2009). Sample Path Properties of Anisotropic Gaussian Random Fields. A Minicourse on Stochastic Partial Differential Equations. In Lecture Notes in Math. pp. 145–212. Springer (1962)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Sanz-Solé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the grant MTM 2015-65092-P from the Dirección General de Investigación, Ministerio de Ciencia, Innovación y Universidades, Spain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinojosa-Calleja, A., Sanz-Solé, M. Anisotropic Gaussian random fields: criteria for hitting probabilities and applications. Stoch PDE: Anal Comp 9, 984–1030 (2021). https://doi.org/10.1007/s40072-021-00190-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-021-00190-1

Keywords

Mathematics Subject Classification

Navigation