Skip to main content
Log in

Modeling of Drug-Drug Interactions between Omeprazole and Erythromycin in the Cytochrome P450-Dependent System In vitro

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

In the present study an electrochemical system based on recombinant cytochrome P450 3A4 (CYP3A4) has been developed for analysis of potential drug-drug interactions between drugs prescribed for Helicobacter pylori eradication therapy. The drug-drug interaction between omeprazole (a proton pump inhibitor; PPI) and macrolide antibiotic erythromycin induced by cytochrome P450 3A4 was demonstrated. In the presence of omeprazole, the rate of erythromycin N-demethylation by CYP3A4, measured by the reaction product (formaldehyde) formation, decreased, while erythromycin had no effect on omeprazole metabolism evaluated using mass-spectrometry analysis of omeprazole sulfone as a metabolite formed during CYP3A4-dependent metabolism. These drug-drug interactions may be explained by a higher affinity of CYP3A4 for omeprazole (the spectral dissociation constant Kd = 18 ± 2 µM) than that for erythromycin (Kd = 52 µM). Using the developed model system, it is possible to analyze drug-drug interactions induced by cytochrome P450 3A4. The results obtained by means of in vitro experiments well correspond to the results of in silico modeling performed using the PASS program and PoSMNA descriptors, which also showed the possibility of drug-drug interactions between omeprazole and erythromycin at the level of biotransformation carried out by cytochrome P450 3A4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ierardi, E., Goni, E., Losurdo, G., and Di Mario, F., Helicobacter, 2014, vol. 19, suppl. 1, pp. 27−31. https://doi.org/10.1111/hel.12157

    Article  CAS  PubMed  Google Scholar 

  2. Marshall, B.J., J. Gastroenterol. Hepatol., 1991, vol. 6, pp. 121−124. https://doi.org/10.1111/j.1440-1746.1991.tb01450.x

    Article  CAS  PubMed  Google Scholar 

  3. Keren, I., Kaldalu, N., Spoering, A., Wang, Y., and Lewis, K., FEMS Microbiol. Lett., 2004, vol. 230, pp. 13−18. https://doi.org/10.1016/S0378-1097(03)00856-5

    Article  CAS  PubMed  Google Scholar 

  4. Graham, D.Y. and Shiotani, A., Nat. Clin. Pract. Gastroenterol. Hepatol., 2008, vol. 5, pp. 321−331. https://doi.org/10.1038/ncpgasthep1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mizoguchi, H., Fujioka, T., and Nasu, M., J. Gastroenterol., 1999, vol. 34, suppl. 11, pp. 32−36.

    PubMed  Google Scholar 

  6. Reshetnyak, V.I. and Reshetnyak, T.M., World J. Gastroenterol., 2017, vol. 23, pp. 4867−4878. https://doi.org/10.3748/wjg.v23.i27.4867

    Article  PubMed  PubMed Central  Google Scholar 

  7. Graham, D.Y. and Fischbach, L., Gut, 2010, vol. 59, pp. 1143−1153. https://doi.org/10.1136/gut.2009.192757

    Article  CAS  PubMed  Google Scholar 

  8. Scott, D., Weeks, D., Melchers, K., and Sachs, G., Gut, 1998, vol. 43, suppl. 1, pp. S56−S60. https://doi.org/10.1136/gut.43.2008.S56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Francesco, V., Zullo, A., Perna, F., Giorgio, F., Hassan, C., Vannella, L., Cristofari, F., Panella, C., Vaira, D., and Ierardi, E., J. Med. Microbiol., 2010, vol. 59, pp. 588−591. https://doi.org/10.1099/jmm.0.018077-0

    Article  PubMed  Google Scholar 

  10. Maconi, G., Parente, F., Russo, A., Vago, L., Im-besi, V., and Bianchi Porro, G., Am. J. Gastroenterol., 2001, vol. 96, pp. 359−366. https://doi.org/10.1111/j.1572-0241.2001.03519.x

    Article  CAS  PubMed  Google Scholar 

  11. Markham, A. and McTavish, D., Drugs, 1996, vol. 51, no. 1, pp. 161–178. https://doi.org/10.2165/00003495-199651010-00010

    Article  CAS  PubMed  Google Scholar 

  12. Attia, T.Z., Yamashita, T., Tsujino, H., Derayea, S.M., Tsutsumi, Y., and Uno, T., Chem. Pharmacol. Bull., 2019, vol. 67, no. 8, pp. 810–815. https://doi.org/10.1248/cpb.c19-00084

    Article  CAS  Google Scholar 

  13. Calabresi, L., Pazzucconi, F., Ferrara, S., di Paolo, A., del Tacca, M., and Sirtori, C., Pharmacol. Res., 2004, vol. 49, pp. 493–499. https://doi.org/10.1016/j.phrs.2003.10.010

    Article  CAS  PubMed  Google Scholar 

  14. Cytochrome P450 Structure, Mechanism, and Biochemistry, Ortiz de Montellano, P.R., Ed., New York: Springer, 2015. https://doi.org/10.1007/978-3-319-12108-6

  15. Guengerich, F.P., in Cytochrome P450: Structure, Mechanism, and Biochemistry, Ortiz de Montel-lano, P.R., Ed., New York: Springer, 2015, pp. 523–785.

  16. Kuzikov, A.V., Masamrekh, R.A., Archakov, A.I., Shumyantseva, V.V., Biomed. Khim. 2018, vol. 64, no. 2, pp. 149–168. https://doi.org/10.18097/PBMC20186402149

    Article  CAS  PubMed  Google Scholar 

  17. Schneider, E. and Clark, D.S., Biosens. Bioelectron., 2013, vol. 39, pp. 1–13. https://doi.org/10.1016/j.bios.2012.05.043

    Article  CAS  PubMed  Google Scholar 

  18. Krishnan, S., Curr. Opin. Electrochem., 2020, vol. 19, pp. 20–26. https://doi.org/10.1016/j.coelec.2019.09.004

    Article  CAS  Google Scholar 

  19. Shumyantseva, V.V., Kuzikov, A.V., Masamrekh, R.A., Bulko, T.V., and Archakov, A.I., Biosens. Bioelectron., 2018, vol. 121, pp. 192–204. https://doi.org/10.1016/j.bios.2018.08.040

    Article  CAS  PubMed  Google Scholar 

  20. Kuzikov, A.V., Masamrekh, R.A., Shkel, T., Strushkevich, N., Gilep, A., Usanov, S., Archakov, A., and Shumyantseva, V., Talanta, 2019, vol. 196, pp. 231–236. https://doi.org/10.1016/j.talanta.2018.12.041

    Article  CAS  PubMed  Google Scholar 

  21. Kuzikov, A.V., Bulko, T.V., Koroleva, P.I., Masamrekh, R.A., Babkina, S.S., Gilep, A.A., and Shumyantseva, V.V., Biomed. Khim., 2020, vol. 66, no. 1, pp. 64–70. https://doi.org/10.18097/PBMC20206601064

    Article  CAS  PubMed  Google Scholar 

  22. Lu, J., Cui, D., Li, H., Zhang, Y., and Liu, S., Electrochimica Acta, 2015, vol. 165, pp. 36–44. https://doi.org/10.1016/j.electacta.2015.02.183

    Article  CAS  Google Scholar 

  23. Pechurskaya, T.A., Lukashevich, O.P., Gilep, A.A., and Usanov, S.A., Biochemistry (Moscow), 2008, vol. 73, pp. 806–811. https://doi.org/10.1134/S0006297908070092

    Article  CAS  PubMed  Google Scholar 

  24. Omura, T. and Sato, R., J. Biol. Chem., 1964, vol. 239, pp. 2379–2385.

    Article  CAS  Google Scholar 

  25. Masamrekh, R.A., Kuzikov, A.V., Haurychenka, Y.I., Shcherbakov, K.A., Veselovsky, A.V., Filimonov, D.A., Dmitriev, A.V., Zavialova, M.G., Gilep, A.A., Shkel, T.V., Strushkevich, N.V., Usanov, S.A., Archakov, A.I., and Shumyantseva, V.V., Fundamental Clinical Pharmacol., 2020, vol. 34, pp. 120–130. https://doi.org/10.1111/fcp.12497

    Article  CAS  Google Scholar 

  26. Nash, T., Biochem. J., 1953, vol. 55, pp. 416–421. https://doi.org/10.1042/bj0550416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dmitriev, A.V., Filimonov, D.A., Rudik, A.V., Pogodin, P.V., Karasev, D.A., Lagunin, A.A., and Poroikov, V.V., SAR QSAR Environ. Res., 2019, vol. 30, pp. 1–10. https://doi.org/10.1080/1062936X.2019.1653966

    Article  Google Scholar 

  28. Dmitriev, A., Filimonov, D., Lagunin, A., Karasev, D., Pogodin, P., Rudik, A., and Poroikov, V., Molecules, 2019, vol. 24, no. 21, pp. 3955–3962. https://doi.org/10.3390/molecules24213955

    Article  CAS  PubMed Central  Google Scholar 

  29. Hansten, P.D. and Horn, J.R., The Top 100 Drug Interactions 2010: A Guide to Patient Management, H&H Publications, 2010.

  30. Shumyantseva, V.V., Makhova, A.A., Shich, E.V., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Shkel, T., Usanov, S.A., Gilep, A.A., and Archa-kov, A.I., BioNanoScience, 2019, vol. 9, pp. 79–86. https://doi.org/10.1007/s12668-018-0567-7

    Article  Google Scholar 

  31. Denisov, I.G., Frank, D.J., and Sligar, S.G., Pharmacology & Therapeutics, 2009, vol. 124, no. 2, pp. 151–167. https://doi.org/10.1016/j.pharmthera.2009.05.011

    Article  CAS  Google Scholar 

  32. Sadeghi, S.J., Ferrero, S., di Nardo, G., and Gilardi, G., Bioelectrochemistry, 2012, vol. 86, pp. 87–91. https://doi.org/10.1016/j.bioelechem.2012.02.010

    Article  CAS  PubMed  Google Scholar 

  33. Masamrekh, R., Kuzikov, A., Veselovsky, A., Toropygin, I., Shkel, T., Strushkevich, N., Gilep, A., Usanov, S., Archakov, A., and Shumyantseva, V., J. Inorg. Biochem., 2018, vol. 186, pp. 24–33. https://doi.org/10.1016/j.jinorgbio.2018.05.010

    Article  CAS  PubMed  Google Scholar 

  34. Korzekwa, K.R., Krishnamachary, N., Shou, M., Ogai, A., Parise, R.A., Rettie, A.E., Gonzalez, F.J., and Tracey, T.S., Biochemistry, 1998, vol. 37, pp. 4137–4147. https://doi.org/10.1021/bi9715627

    Article  CAS  PubMed  Google Scholar 

  35. Shou, M., Dai, R., Korzekwa, K.R., Baillie, T.A., and Rushmore, T.H., J. Biol. Chem., 2001, vol. 276, pp. 2256–2262. https://doi.org/10.1074/jbc.M008799200

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, L., Sun, N., Tian, L., Zhao, S., Sun, B., Sun, Y., and Zhao, D., Bioorganic Medicinal Chemistry Letts., 2019, vol. 29, pp. 2016–2024. https://doi.org/10.1016/j.bmcl.2019.06.040

    Article  CAS  Google Scholar 

  37. Greenblatt, D.J., Zhao, Y., Venkatakrishnan, K., Duan, S.X., Harmatz, J.S., Parent, S.J., Court, M.H., and von Moltke, L.L., J. Pharmacy Pharmacol., 2011, vol. 63, no. 2, pp. 214–221. https://doi.org/10.1111/j.2042-7158.2010.01202.x

    Article  CAS  Google Scholar 

  38. Lewis, D.F.V. and and Lake, B.G., Toxicology, 1998, vol. 125, pp. 31–44. https://doi.org/10.1016/S0300-483X(97)00159-5

    Article  CAS  PubMed  Google Scholar 

  39. Lutz, J.D. and Isoherranen, N., Drug Metab. Dispos., 2012, vol. 40, pp. 159–168. https://doi.org/10.1124/dmd.111.042200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McConn, D.J., Lin, Y.S., Allen, K., Kunze, K.L., and Thummel, K.E., Drug Metab. Dispos., 2004, vol. 32, pp. 1083–1091. https://doi.org/10.1124/dmd.32.10

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 17-75-20250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shumyantseva.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving humans or the use of animals as objects.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interests.

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koroleva, P.I., Kuzikov, A.V., Masamrekh, R.A. et al. Modeling of Drug-Drug Interactions between Omeprazole and Erythromycin in the Cytochrome P450-Dependent System In vitro. Biochem. Moscow Suppl. Ser. B 15, 62–70 (2021). https://doi.org/10.1134/S1990750821010030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750821010030

Keywords:

Navigation