Skip to main content
Log in

Mass-Spectrometric MRM Analysis of FDA-Approved Proteins in Plasma of Healthy Volunteers

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

The proteomic composition of a biological sample serves as the most important feature of a biological object, and it allows discriminating normal and pathological conditions. Targeted mass spectrometric analysis, particularly, multiple reaction monitoring (MRM) using synthetic stable isotope-labeled internal standards (SIS), is the main alternative to the ELISA method for analysis of diagnostically significant proteins. Based on the MRM results, a prototype test system has been developed; it employs the targeted mass spectrometric method for multiplex, quantitative analysis of FDA-approved proteins in whole plasma. Using this approach, it was possible to measure the content of 42 proteins in 31 samples in a concentration range spanning five orders of magnitude. The interindividual variability for 30 of the 42 registered proteins was less than 40%. The largest scatter was observed for haptoglobin (68%), immunoglobulin heavy constant delta IGHD (90%), angiotensin (72%), sex hormone-binding globulin SHBG (100%), and lipoprotein-(a) (136%). The obtained results on the concentration of proteins correlate with published data (Hortin et al., Clinical Chemistry, 2008, vol. 54, 1608) with R2 = 0.84. The developed prototype test system based on targeted mass spectrometric analysis of proteins can be considered as an alternative to methods using monoclonal antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Lomnytska, M., Pinto, R., Becker, S., Engström, U., Gustafsson, S., Björklund, C., Templin, M., Bergstrand, J., Xu, L., Widengren, J., Epstein, E., Franzén, B., and Auer, G., Biomark. Res, 2018, vol. 6, no. 1, 2. https://doi.org/10.1186/s40364-018-0118-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bhardwaj, M., Gies, A., Werner, S., Schrotz-King, P., and Brenner, H., Clin. Transl. Gastroenterol., 2017, vol. 8, no. 11, e128.

    Article  CAS  Google Scholar 

  3. Niu, L., Song, X., Wang, N., Xue, L., Song, X., and Xie, L., Cancer Sci., 2019, vol. 110, no. 1, pp. 433−442.

    Article  CAS  Google Scholar 

  4. Geyer, P.E., Kulak, N.A., Pichler, G., Holdt, L.M., Teupser, D., and Mann, M., Cell Syst., 2016, vol. 2, no. 3, pp. 185−195. https://doi.org/10.1016/j.cels.2016.02.015

    Article  CAS  PubMed  Google Scholar 

  5. Anderson, N.L. and Anderson, N.G., Mol. Cell. Proteomics, 2002, vol. 1, no. 11, pp. 845−867.

    Article  CAS  Google Scholar 

  6. Kopylov, A.T., Ponomarenko, E.A., Ilgisonis, E.V., Pyatnitskiy, M.A., Lisitsa, A.V., Poverennaya, E.V., Kiseleva, O.I., Farafonova, T.E., Tikhonova, O.V., Zavialova, M.G., Novikova, S.E., Moshkovskii, S.A., Radko, S.P., Morukov, B.V., Grigoriev, A.I., Paik, Y.K., Salekdeh, G.H., Urbani, A., Zgoda, V.G., and Archakov, A.I., J. Proteome Res., 2018, vol. 18, no. 1, pp. 120−129. https://doi.org/10.1021/acs.jproteome.8b00391

    Article  CAS  PubMed  Google Scholar 

  7. Yeh, C.Y., Adusumilli, R., Kullolli, M., Mallick, P., John, E.M., and Pitteri, S.J., Biomark Res., 2017, vol. 5, 30. eCollection 2017.https://doi.org/10.1186/s40364-017-0110-y

  8. Kopylov, A.T., Ilgisonis, E.V., Moysa, A.A., Tikhonova, O.V., Zavialova, M.G., Novikova, S.E., Lisitsa, A.V., Ponomarenko, E.A., Moshkovskii, S.A., Markin, A.A., Grigoriev, A.I., Zgoda, V.G., and Archakov, A.I., J. Proteome Res., 2016, vol. 15, no. 11, pp. 4039−4046.

    Article  CAS  Google Scholar 

  9. An, B., Zhang, M., Pu, J., Shen, S., Qu, Y., Chen, Y.J., Huo, S., Wang, X., Polli, J.R., Balthasar, J.P., Herzog, D., Ferrari, L., Staack, R.F., Richter, W.F., Otteneder, M.B., Benincosa, L.J., Zhou, S., Vazvaei, F., and Qu, J., Anal. Chem., 2018, vol. 90, no. 3, pp. 1870−1880.

    Article  Google Scholar 

  10. Clerc, F., Reiding, K.R., Jansen, B.C., Kammeijer, G.S., Bondt, A., and Wuhrer, M., Glycoconjugate J., 2016, vol. 33, no. 3, pp. 309−343. https://doi.org/10.1007/s10719-015-9626-2

    Article  CAS  Google Scholar 

  11. Deutsch, E.W., Lane, L., Overall, C.M., Bandeira, N., Baker, M.S., Pineau, C., Moritz, R.L., Corrales, F., Orchard, S., van Eyk, J.E., Paik, Y., Weintraub, S.T., Vandenbrouck, Y., and Omenn, G.S., J. Proteome Res., 2019, vol. 18, no. 12, pp. 4108−4116. https://doi.org/10.1021/acs.jproteome.9b00542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van der Straten, A, Herzog, A., Cabezón, T., and Bollen, A., FEBS Lett., 1984, vol. 168, no. 1, pp. 103−107.

    Article  CAS  Google Scholar 

  13. Bensi, G., Raugei, G., Klefenz, H., and Cortese, R., EMBO J., 1985, vol. 4, no. 1, pp. 119−126.

    Article  CAS  Google Scholar 

  14. Sadrzadeh, S.M.H. and Bozorgmehr, J., Am. J. Clin. Path., 2004, vol. 121, pp. 97−104.

    Google Scholar 

  15. Hamdy, G., Hendy, O., Mahmoud, H., El, A., Ali, S., and Khalaf, F., Egypt. J. Med. Hum. Genet., 2014, vol. 15, no. 3, pp. 257−264.

    Article  Google Scholar 

  16. Nordestgaard, B.G., Chapman, M.J., Ray, K., Borén, J., Andreotti, F., Watts, G.F., Ginsberg, H., Amarenco, P., Catapano, A., Descamps, O.S., Fisher, E., Kovanen, P.T., Kuivenhoven, J.A., Lesnik, P., Masana, L., Reiner, Z., Taskinen, M.R., Tokgözoglu, L., and Tybjærg-Hansen, A., Eur. Heart J., 2010, vol. 31, no. 23, pp. 2844−2853. https://doi.org/10.1093/eurheartj/ehq386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, K., and Cerutti, A., Immunol. Revs., 2010, vol. 237, no. 1, pp. 160−179.

    Article  CAS  Google Scholar 

  18. Hortin, G.L., Sviridov, D., and Anderson, N.L., Clin. Chem., 2008, vol. 54, no. 10, pp. 1608−1616.

    Article  CAS  Google Scholar 

  19. Ilgisonis, E.V., Kopylov, A.T., Ponomarenko, E.A., Poverennaya, E.V., Tikhonova, O.V., Farafonova, T.E., Novikova, S.E., Lisitsa, A.V., Zgoda, V.G., and Archakov, A.I., J. Proteome Res., 2018, vol. 17, no. 12, pp. 4258−4266. https://doi.org/10.1021/acs.jproteome.8b00754

    Article  CAS  PubMed  Google Scholar 

  20. Rosser, C.J., Dai, Y., Miyake, M., Zhang, G., and Goodison, S., BMC Biotechnol., 2014, vol. 14, no. 1, 24. https://doi.org/10.1186/1472-6750-14-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of Core Facility “Human Proteome” (IBMC). Experimental protocols are available at http://proteocenter.ibmc.msk.ru

Funding

This work was supported by the Russian Science Foundation (project no. 20-15-00410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Novikova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All volunteers gave written informed consent for participation in this study.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of int-erest.

Supplementary materials are available in the electronic version of the article at the journal’s website (pbmc.ibmc.msk.ru).

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, S.E., Farafonova, T.E., Tikhonova, O.V. et al. Mass-Spectrometric MRM Analysis of FDA-Approved Proteins in Plasma of Healthy Volunteers. Biochem. Moscow Suppl. Ser. B 15, 40–61 (2021). https://doi.org/10.1134/S1990750821010054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750821010054

Keywords:

Navigation