Skip to main content
Log in

Low-Frequency Noise in Light-Emitting Diodes Based on InGaN/GaN Quantum Wells under Electric Actions Accompanied with an Increase in the External Quantum Efficiency

  • SOLID STATE ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of testing the degradation of light-emitting diode structures with InGaN/GaN quantum wells are reported. An increase in the external quantum efficiency as compared to the initial value is observed after the passage of current of 150–170 mA. Possible physical processes leading to a change in the quantum efficiency and an increase in low-frequency noise are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. La Grassa, M. Meneghini, C. De Santi, M. Mandurrino, M. Goano, F. Bertazzi, R. Zeisel, B. Galler, G. Meneghesso, and E. Zanoni, Microelectron. Reliab. 55, 1775 (2015).

    Article  Google Scholar 

  2. D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, and E. Zanoni, IEEE Trans. Device Mater. Reliab. 16 (2), 213 (2016).

    Article  Google Scholar 

  3. C. G. Moe, M. L. Reed, G. A. Garrett, A. V. Sampath, T. Alexander, H. Shen, M. Wraback, Y. Bilenko, M. Shatalov, J. Yang, W. Sun, J. Deng, and R. Gaska, Appl. Phys. Lett. 96, 213512 (2010).

    Article  ADS  Google Scholar 

  4. C. De Santi, M. Meneghini, G. Meneghesso, and E. Zanoni, Microelectron. Reliab. 64, 623 (2016).

    Article  Google Scholar 

  5. N. Trivellin, D. Montia, C. De Santi, M. Buffoloa, G. Meneghessoa, E. Zanonia, and M. Meneghinia, Microelectron. Reliab. 8890, 868 (2018).

  6. M. La Grassa, M. Meneghini, C. De Santi, E. Zanoni, and G. Meneghesso, Microelectron. Reliab. 64, 614 (2016).

    Article  Google Scholar 

  7. Z. Yatabe, J. T. Asubar, and T. Hashizume, J. Phys. D: Appl. Phys. 49, 393001 (2016).

    Article  Google Scholar 

  8. B.I. Yakubovich, Nadezhnost’ 17 (2), 31 (2017). https://doi.org/10.21683/1729-2646-2017-17-2-31-35

    Article  Google Scholar 

  9. N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V.   S.   Kogotkov, Yu. T. Rebane, M. V. Virko, and Y. G. Shreter, Semiconductors 49 (6), 827 (2015). https://doi.org/10.1134/S1063782615060056

    Article  ADS  Google Scholar 

  10. N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, and Y. G. Shreter, Semiconductors 53 (1), 99 (2019). https://doi.org/10.1134/S1063782619010032

    Article  ADS  Google Scholar 

  11. N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. A. Tarala, and Yu. G. Shreter, Tech. Phys. Lett. 42 (11), 1099 (2016). https://doi.org/10.1134/S1063785016110146

    Article  ADS  Google Scholar 

  12. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, Appl. Phys. Lett. 96 (13), 133502 (2010). https://doi.org/10.1063/1.3367897

    Article  ADS  Google Scholar 

  13. S. Nakamura, M. Senon, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34 (10B), L1332 (1995). https://doi.org/10.1143/JJAP.34.L1332

    Article  Google Scholar 

  14. N. I. Bochkareva, Yu. T. Rebane, and Yu. G. Shreter, Semiconductors 49 (12), 1665 (2015). https://doi.org/10.1134/S1063782615120040

    Article  ADS  Google Scholar 

  15. A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Yu. T. Rebane, D. V. Tarkhin, and Yu. G. Shreter, Semiconductors 40 (5), 605 (2006). https://doi.org/10.1134/S1063782606050162

    Article  ADS  Google Scholar 

  16. N. I. Bochkareva, R. I. Gorbunov, A. V. Klochkov, Yu. S. Lelikov, I. A. Martynov, Yu. T. Rebane, A. S. Belov, and Yu. G. Shreter, Semiconductors 42 (11), 1355 (2008). https://doi.org/10.1134/S1063782608110225

    Article  ADS  Google Scholar 

  17. E. F. Schubert, Light Emitting Diodes (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  18. A. David, C. A. Hurni, N. G. Young, and M. D. Craven, Appl. Phys. Lett. 109, 083501 (2016).

    Article  ADS  Google Scholar 

  19. D. Zhu, J. Xu, A. Noemaun, J. Kim, E. Schubert, M. Crawford, and D. Koleske, Appl. Phys. Lett. 94, 081113 (2009).

    Article  ADS  Google Scholar 

  20. G. Meneghesso, M. Meneghini, and E. Zanoni, J. Phys. D: Appl. Phys. 43, 354007 (2010).

    Article  Google Scholar 

  21. J. Hu, L. Yang, and M. W. Shin, J. Phys. D: Appl. Phys. 41, 035107 (2008).

    Article  ADS  Google Scholar 

  22. M. Meneghini, G. Meneghesso, N. Trivellin, E. Zanoni, K. Orita, M. Yuri, and D. Ueda, IEEE Electron Device Lett. 29 (6), 578 (2008).

    Article  ADS  Google Scholar 

  23. M. Meneghini, N. Trivellin, K. Orita, S. Takigawa, M. Yuri, T. Tanaka, D. Ueda, E. Zanoni, and G. Meneghesso, IEEE Electron Device Lett. 30 (4), 356 (2009).

    Article  ADS  Google Scholar 

  24. D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni, J. Glaab, J. Rass, S. Einfeldt, F. Mehnke, J. Enslin, T. Wernicke, and M. Kneissl, IEEE Trans. Electron Devices 64 (1), 200 (2017).

    Article  ADS  Google Scholar 

  25. J. Glaab, J. Haefke, J. Ruschel, M. Brendel, J. Rass, T. Kolbe, A. Knauer, M. Weyers, S. Einfeldt, M. Guttmann, C. Kuhn, J. Enslin, T. Wernicke, and M. Kneissl, J. Appl. Phys. 123, 104502 (2018).

    Article  ADS  Google Scholar 

  26. J. Glaab, J. Ruschel, T. Kolbe, A. Knauer, J. Rass, H.K. Cho, N. Lobo Ploch, S. Kreutzmann, S. Einfeldt, M. Weyers, and M. Kneissl, IEEE Photonics Technol. Lett. 31 (7), 529 (2019).

    Article  ADS  Google Scholar 

  27. E. Fabris, M. Meneghini, C. De Santi, Z. Hu, W. Li, K. Nomoto, X. Gao, D. Jena, H. G. Xing, G. Meneghesso, and E. Zanoni, Microelectron. Reliab. 8890, 568 (2018).

  28. C. De Santi, M. Meneghini, N. Trivellin, S. Gerardin, M. Bagatin, A. Paccagnella, G. Meneghesso, and E. Zanoni, Appl. Phys. Lett. 105, 213506 (2014).

    Article  ADS  Google Scholar 

  29. T. T. Chen, C. P. Wang, H. K. Fu, P. T. Chou, and S. P. Ying, Opt. Express 22 (S5), A1328 (2014).

    Article  ADS  Google Scholar 

  30. K. C. Yung, H. Liem, H. S. Choy, and W. K. Lun, J. Appl. Phys. 109, 094509 (2011).

    Article  ADS  Google Scholar 

  31. J. Fu, L. Zhao, H. Cao, X. Sun, B. Sun, J. Wang, and J. Li, AIP Adv. 6, 055219 (2016).

    Article  ADS  Google Scholar 

  32. S. Bychikhin, D. Pogany, L. K. J. Vandamme, G. Meneghesso, and E. Zanoni, J. Appl. Phys. 97, 123714 (2005).

    Article  ADS  Google Scholar 

  33. N. V. D’yakonova, M. E. Levinshtein, and S. L. Rumyantsev, Sov. Phys.-Semicond. 25 (12), 1241 (1991).

    Google Scholar 

  34. S. Sawyer, S. L. Rumyantsev, M. S. Shur, N. Pala, Yu. Bilenko, J. P. Zhang, X. Hu, A. Lunev, J. Deng, and R. Gaska, J. Appl. Phys. 100, 034504 (2006).

    Article  ADS  Google Scholar 

  35. F. N. Hooge, Physica 60 (1), 130 (1972). https://doi.org/10.1016/0031-8914(72)90226-1

    Article  ADS  Google Scholar 

  36. G.P. Zhigal’skii, Phys.-Usp. 46 (5), 449 (2003). https://doi.org/10.1070/PU2003v046n05ABEH001244

    Article  Google Scholar 

  37. B. Šaulys, J. Matukas, V. Palenskis, S. Pralgauskaitė, and G. Kulikauskas, Acta Phys. Pol., A 119 (4), 514 (2011). https://doi.org/10.12693/APhysPolA.119.521

    Article  ADS  Google Scholar 

  38. L. Wang, W. He, T. Zheng, Z. Chen, and S. Zheng, Superlattices Microstruct. 133, 106188 (2019).

    Article  Google Scholar 

  39. N. Liu, H. Gu, Y. Wei, and S. Zheng, Superlattices Microstruct. 141, 106492 (2020).

    Article  Google Scholar 

  40. X. Wang, H.-Q. Sun, and Z.-Y. Guo, Opt. Mater. 86, 133 (2018).

    Article  ADS  Google Scholar 

Download references

ACLNOWLEDGMENTS

The author thanks A.V. Klochkov for participation in the research and valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ivanov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.M. Low-Frequency Noise in Light-Emitting Diodes Based on InGaN/GaN Quantum Wells under Electric Actions Accompanied with an Increase in the External Quantum Efficiency. Tech. Phys. 66, 71–76 (2021). https://doi.org/10.1134/S1063784221010114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221010114

Navigation