Skip to main content
Log in

Resistive Switching Effect of the Structure Based on Silicon Nitride

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The electrophysical properties and the resistive switching effect in ITO/SiNx/Si memristor structures have been investigated. A silicon nitride film ~200 nm thick with a Si/N ratio varying with depth has been deposited on a silicon substrate by chemical vapor deposition. The current–voltage characteristics of ITO/SiNx/Si-p structures have shown that the conduction mechanism in a high-resistivity state depends on the properties of the nitride film and is described in terms of the Pool–Frenkel model, which takes into consideration electron hops between neighboring traps. When the polarity of the voltage applied to the structure changes sign, conducting channels in the nitride film break down and the structure switches over to a high-resistivity state. The photoswitching effect has been discovered in the ITO/SiNx/Si structure, which opens up a new frontier for using memristors in silicon optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  2. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008). https://doi.org/10.1038/nature06932

    Article  ADS  Google Scholar 

  3. Y.-H. Liu, T.-C. Zhan, T. Wang, W.-J. Tsai, T.-C. Lu, K.-C. Chen, and C.-Y. Lu, IEEE Trans. Electron Devices 66 (12), 5155 (2019). https://doi.org/10.1109/TED.2019.2949251

    Article  ADS  Google Scholar 

  4. A. A. Gismatulin, V. A. Gritsenko, T.-J. Yen, and A. Chin, Appl. Phys. Lett. 115 (25), 253502 (2019). https://doi.org/10.1063/1.5127039

    Article  ADS  Google Scholar 

  5. K. A. Nasyrov and V. A. Gritsenko, J. Appl. Phys. 109 (9), 093705 (2011). https://doi.org/10.1063/1.3587452

    Article  ADS  Google Scholar 

  6. X. Jiang, Z. Ma, H. Yang, J. Yu, W. Wang, W. Zhang, W. Li, J. Xu, L. Xu, K. Chen, X. Huang, and D. J. Feng, Appl. Phys. 116 (12), 123705 (2014). https://doi.org/10.1063/1.4896552

    Article  Google Scholar 

  7. T. J. Yen, A. Chin, and V. Gritsenko, Sci. Rep. 10, 2807 (2020). https://doi.org/10.1038/s41598-020-59838-y

    Article  ADS  Google Scholar 

  8. I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, M. Makhavikou, A. Mudryi, V. Zhivulko, J. Żuk, P. Kopyciński, and D. Murzalinov, Thin Solid Films 626, 70 (2017). https://doi.org/10.1016/j.tsf.2017.02.027

    Article  ADS  Google Scholar 

  9. T. Anutgan, M. Anutgan, I. Atilgan, and B. Katircioglu, Appl. Phys. Lett. 111 (5), 053502 (2017). https://doi.org/10.1063/1.4997029

    Article  ADS  Google Scholar 

  10. A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, Nano Lett. 13 (12), 6151 (2013). https://doi.org/10.1021/nl403486x

    Article  ADS  Google Scholar 

  11. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, Nat. Photonics 9 (11), 725 (2015). https://doi.org/10.1038/NPHOTON.2015.182

    Article  ADS  Google Scholar 

  12. A. N. Mikhaylov, A. I. Belov, D. V. Guseinov, D. S. Korolev, I. N. Antonov, D. V. Efimovykh, S. V. Ti-khov, A. P. Kasatkin, O. N. Gorshkov, D. I. Tetelbaum, A. I. Bobrov, N. V. Malekhonova, D. A. Pavlov, E. G. Gryaznov, and A. P. Yatmanov, Mater. Sci. Eng., B 194, 48 (2015). https://doi.org/10.1016/j.mseb.2014.12.029

    Article  Google Scholar 

  13. I. Valov and M. N. Kozicki, J. Phys. D: Appl. Phys. 46 (7), 074005 (2013). https://doi.org/10.1088/0022-3727/46/7/074005

    Article  ADS  Google Scholar 

  14. M. R. Boon, Thin Solid Films 11 (1), 183 (1972). https://doi.org/10.1016/0040-6090(72)90357-4

    Article  ADS  Google Scholar 

  15. D. V. Gritsenko, S. S. Shaĭmeev, V. V. Atuchin, T. I. Grigor’eva, L. D. Pokrovskiĭ, O. P. Pchelyakov, V. A. Gritsenko, A. L. Aseev, and V. G. Lifshits, Phys. Solid State 48 (2), 224 (2006). https://doi.org/10.1134/S1063783406020053

    Article  ADS  Google Scholar 

Download references

Funding

This study was performed in the framework of the state research program “Photonics, Microelectronics, and Nanoelectronics.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. F. Komarov or I. N. Parkhomenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarov, F.F., Romanov, I.A., Vlasukova, L.A. et al. Resistive Switching Effect of the Structure Based on Silicon Nitride. Tech. Phys. 66, 133–138 (2021). https://doi.org/10.1134/S1063784221010126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221010126

Navigation