Skip to main content
Log in

The Influence of the Thickness of Silicon- and Oxygen-Doped Hydrogenized Carbon Films on Their Surface Properties

  • PHYSICAL ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Hydrogenized carbon films 0.5–7.0 μm thick doped with silicon (11.9 ± 0.4 at %) and oxygen (1.7 ± 0.1 at %) have been grown on VT-6 titanium and silicon substrates in an externally heated arc discharge plasma. The hardness, internal stresses, surface morphology, wettability, and surface potential of the films against their thickness have been studied. It has been found that as the film gets thicker, the allowable load on the material and its hardness grow. It has been shown that the films have low internal stresses (below 600 MPa) and the water contact angle is 75°–80°. It have turned out that an increase in film thickness raises the negative surface potential from 50 to 670 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. X. An, Zh. Wu, L. Liu, T. Shao, S. Xiao, S. Cui, H. Lin, R. K. Y. Fu, X. Tian, P. K. Chu, and F. Pan, Surf. Coat. Technol. 365, 152 (2019). https://doi.org/10.1016/j.surfcoat.2018.08.099

    Article  Google Scholar 

  2. C. W. Zou, H. J. Wang, L. Feng, and S. W. Xue, Appl. Surf. Sci. 286, 137 (2013). https://doi.org/10.1016/j.apsusc.2013.09.036

    Article  ADS  Google Scholar 

  3. D. C. Sutton, G. Limbert, D. Stewart, and R. J. K. Wood, Friction 1 (3), 210 (2013). https://doi.org/10.1007/s40544-013-0023-1

    Article  Google Scholar 

  4. R. Paul, S. Bhattacharyya, R. Bhar, and A. Pal, Appl. Surf. Sci. 257, 10451 (2011). https://doi.org/10.1016/j.apsusc.2011.06.144

    Article  ADS  Google Scholar 

  5. W. Yue, X. Gao, C. Wang, Z. Fu, X. Yu, and J. Liu, Mater. Lett. 73, 202 (2012). https://doi.org/10.1016/j.matlet.2012.01.044

    Article  Google Scholar 

  6. X. Li, P. Ke, and A. Wang, AIP Adv. 5 (1), 017111 (2015). https://doi.org/10.1063/1.4905788

    Article  ADS  Google Scholar 

  7. H. W. Choi, R. H. Dauskardt, S.-C. Lee, K.-R. Lee, and K. H. Oh, Diamond Relat. Mater. 17, 252 (2008). https://doi.org/10.1016/j.diamond.2007.12.034

    Article  ADS  Google Scholar 

  8. K.-R. Lee, K. Y. Eun, I. Kim, and J. Kim, Thin Solid Films 377378, 261 (2000). https://doi.org/10.1016/S0040-6090(00)01429-2

  9. Abdul Wasy Zia, Zhifeng Zhou, Po Wan Shum, and Lawrence Kwok Yan Li, Surf. Coat. Technol. 320, 118 (2017). https://doi.org/10.1016/j.surfcoat.2017.01.089

    Article  Google Scholar 

  10. P. A. Karaseov, O. A. Podsvirov, K. V. Karabeshkin, A.  Ya. Vinogradov, A. Azarov, A. I. Titov, and A. S. Smirnov, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 3107 (2010). https://doi.org/10.1016/j.nimb.2010.05.063

    Article  Google Scholar 

  11. M. Shiureviciute, J. Laurikaitiene, D. Adliene, L. Augulis, Z. Rutkuniene, and A. Jotautis, Vacuum 83, s159 (2009). https://doi.org/10.1016/j.vacuum.2009.01.052

    Article  ADS  Google Scholar 

  12. K. Koshigan, F. Mangolini, J. B. McClimon, B. Vacher, S. Bec, R. W. Carpick, and J. Fontaine, Carbon 93, 851 (2015). https://doi.org/10.1016/j.carbon.2015.06.004

    Article  Google Scholar 

  13. D. Bociaga, A. Sobczyk-Guzenda, W. Szymanski, A. Jedrzejczak, A. Jastrzebska, A. Olejnik, and K. Jastrzebski, Appl. Surf. Sci. 417, 23 (2017). https://doi.org/10.1016/j.apsusc.2017.03.223

    Article  ADS  Google Scholar 

  14. D. Bociaga, M. Kaminska, A. Sobczyk-Guzenda, K. Jastrzebska, L. Swiatek, and A. Olejnik, Diamond Relat. Mater. 67, 41 (2016). https://doi.org/10.1016/j.diamond.2016.01.025

    Article  ADS  Google Scholar 

  15. A. Bendavid, P. J. Martin, C. Comte, E. W. Preston, A. J. Haq, F. S. Magdon Ismail, and R. K. Singh, Diamond Relat. Mater. 16, 1616 (2007). https://doi.org/10.1016/j.diamond.2007.02.006

    Article  ADS  Google Scholar 

  16. N. Kumar, S. A. Barve, S. S. Chopade, K. Rajib, N. Chand, D. Sitaram, A. K. Tyagi, and D. S. Patil, Tribol. Int. 84, 124 (2015). https://doi.org/10.1016/j.triboint.2014.12.001

    Article  Google Scholar 

  17. D. Batory, A. Jedrzejczak, W. Szymanski, P. Niedzielski, M. Fijalkowski, P. Louda, I. Kotela, M. Hromadka, and J. Musil, Thin Solid Films 590, 299 (2015). https://doi.org/10.1016/j.tsf.2015.08.017

    Article  ADS  Google Scholar 

  18. A. S. Grenadyorov, K. V. Oskomov, N. F. Kovsharov, and A. A. Solovyev, J. Phys.: Conf. Ser. 1115, 042046 (2018). https://doi.org/10.1088/1742-6596/1115/4/042046

    Article  Google Scholar 

  19. A. S. Grenadyorov, A. A. Solovyev, K. V. Oskomov, and V. O. Oskirko, J. Vac. Sci. Technol., A 37 (6), 061512 (2019). https://doi.org/10.1116/1.5118852

    Article  Google Scholar 

  20. F. F. Conde, J. A. Á. Diaz, G. F. da Silva, and A.  P.  Tschiptschin, Mater. Res. 22 (2), e20180499 (2019). https://doi.org/10.1590/1980-5373-mr-2018-0499

    Article  Google Scholar 

  21. S. Meškinis, S. Tamulevičius, V. Kopustinskas, M. Andrulevičius, A. Guobienė, R. Gudaitis, and I. Liutvinienė, Thin Solid Films 515 (19), 7615 (2007). https://doi.org/10.1016/j.tsf.2006.11.089

    Article  ADS  Google Scholar 

  22. E. V. Zavedeev, O. S. Zilova, A. D. Barinov, M. L. Shupegin, N. R. Arutyunyan, B. Jaeggi, B. Neuenschwander, and S. M. Pimenov, Diamond Relat. Mater. 74, 45 (2017). https://doi.org/10.1016/j.diamond.2017.02.003

    Article  ADS  Google Scholar 

  23. I. A. Khlusov, V. F. Pichugin, E. A. Gostischev, Yu. P. Sharkeyev, R. A. Surmenev, M. A. Surmeneva, Y. V. Legostayeva, M. V. Chaikina, M. V. Dvornichenko, and N. S. Morozova, Byull. Sibir. Med. 10 (3), 72 (2011). https://doi.org/10.20538/1682-0363-2011-3-72-81

    Article  Google Scholar 

  24. M. Zhao, B. Song, J. Pu, T. Wada, B. Reid, G. Tai, F. Wang, A. Guo, P. Walczysko, Yu Gu, T. Sasaki, A. Suzuki, J. V. Forrester, H. R. Bourne, P. Devreotes, C. Mccaig, and J. M. Penninger, Nature 442 (7101), 457 (2006). https://doi.org/10.1038/nature04925

    Article  ADS  Google Scholar 

  25. O. V. Bondar, D. V. Saifullina, I. I. Shakhmaeva, I. I. Mavlyutova, and T. I. Abdullin, Acta Nat. 4 (1), 78 (2012). https://doi.org/10.32607/20758251-2012-4-1-78-81

    Article  Google Scholar 

  26. V.P. Rotstein, R. Gyuntsel, A.B. Markov, D.I. Proskurovsky, M.T. Fam, E. Rikhter, and V.A. Shulov, Fiz. Khim. Obr. Mater. 1, 62 (2006).

    Google Scholar 

  27. J. B. Cai, X. L. Wang, W. Q. Bai, X. Y. Zhao, T. Q. Wang, and J. P. Tu, Appl. Surf. Sci. 279, 450 (2013). https://doi.org/10.1016/j.apsusc.2013.04.136

    Article  ADS  Google Scholar 

  28. W. C. Oliver and G. M. Pharr. J. Mater. Res. 19 (1), 3 (2004). https://doi.org/10.1557/jmr.2004.19.1.3

    Article  ADS  Google Scholar 

  29. V. A. Novikov, D. V. Grigoryev, A. V. Voitsekhovskii, S. A. Dvoretsky, and N. N. Mikhailov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 10 (5), 1096 (2016). https://doi.org/10.1134/S1027451016050372

    Article  Google Scholar 

  30. X. L. Peng, Z. H. Barber, and T. W. Clyne, Surf. Coat. Technol. 138, 23 (2001). https://doi.org/10.1016/S0257-8972(00)01139-7

    Article  Google Scholar 

  31. A. S. Grenadyorov, A. A. Solovyev, K. V. Oskomov, S. A. Onischenko, A. M. Chernyavskiy, M. O. Zhulkov, and V. V. Kaichev, Surf. Coat. Technol. 381, 125113 (2020). https://doi.org/10.1016/j.surfcoat.2019.125113

    Article  Google Scholar 

  32. A. S. Grenadyorov, A. A. Solovyev, K. V. Oskomov, and V. S. Sypchenko, Surf. Coat. Technol. 349, 547 (2018). https://doi.org/10.1016/j.surfcoat.2018.06.019

    Article  Google Scholar 

  33. A. A. Ogwu, T. I. T. Okpalugo, and J. A. D. McLaughlin, AIP Adv. 2 (3), 032128 (2012). https://doi.org/10.1063/1.4742852

    Article  ADS  Google Scholar 

  34. A. R. Shugurov, A. V. Panin, and K. V. Oskomov, Phys. Solid State 50 (6), 1050 (2008). https://doi.org/10.1134/S1063783408060097

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the administration of the Tomsk Regional Research Center for Collective Use center (Siberian Branch, Russian Academy of Sciences) for the submission of the NanoTest 600 nanoindenter.

Funding

This study was supported by grant no. MK-1234.2020.8 of the President of the Russian Federation. Surface potential measurements were supported by the Russian Science Foundation, grant no. 19-19-00186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Grenadyorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grenadyorov, A.S., Solov’ev, A.A. & Oskomov, K.V. The Influence of the Thickness of Silicon- and Oxygen-Doped Hydrogenized Carbon Films on Their Surface Properties. Tech. Phys. 66, 139–144 (2021). https://doi.org/10.1134/S1063784221010096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221010096

Navigation