Skip to main content
Log in

A Modified Morrey-Kohn-Hörmander Identity and Applications to the \(\overline{\partial }\)-Problem

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove a modified form of the classical Morrey-Kohn-Hörmander identity, adapted to pseudoconcave boundaries. Applying this result to an annulus between two bounded pseudoconvex domains in \({{\mathbb {C}}}^n\), where the inner domain has \({\mathcal {C}}^{1,1}\) boundary, we show that the \(L^2\) Dolbeault cohomology group in bidegree (pq) vanishes if \(1\le q\le n-2\) and is Hausdorff and infinite-dimensional if \(q=n-1\), so that the Cauchy-Riemann operator has closed range in each bidegree. As a dual result, we prove that the Cauchy-Riemann operator is solvable in the \(L^2\) Sobolev space \(W^1\) on any pseudoconvex domain with \({\mathcal {C}}^{1,1}\) boundary. We also generalize our results to annuli between domains which are weakly q-convex in the sense of Ho for appropriate values of q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreotti, A., Grauert, H.: Théorème de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90, 193–259 (1962)

    Article  MathSciNet  Google Scholar 

  2. Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math. (25), 81–130 (1965)

  3. Bredon, G.E.: Topology and geometry, Graduate Texts in Mathematics, vol. 139. Springer-Verlag, New York (1993)

    Google Scholar 

  4. Chakrabarti, D., Laurent-Thiébaut, C., Shaw, M.-C.: On the \(L^2\)-Dolbeault cohomology of annuli. Indiana Univ. Math. J. 67, 831–857 (2018)

    Article  MathSciNet  Google Scholar 

  5. Chakrabarti, D., Shaw, M.-C.: \(L^2\) Serre duality on domains in complex manifolds and applications. Trans. Amer. Math. Soc. 364, 3529–3554 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chen, S.-C., Shaw, M.-C.: Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, vol. 19. American Mathematical Society, Providence, RI (2001)

    Book  Google Scholar 

  7. Evans, L.C.: Partial differential equations, second ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, (2010)

  8. Fassina, M., Pinton, S.: Existence and Interior Regularity Theorems for \(\overline{\partial }\) on \(Q\)-Convex Domains, to appear in Complex Analysis and Operator Theory, https://doi.org/10.1007/s11785-018-0874-6, (2018)

  9. Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  Google Scholar 

  10. Folland, G.B., Kohn, J.J.: The Neumann problem for the Cauchy-Riemann complex, Princeton University Press, Princeton, N.J., Annals of Mathematics Studies, No. 75 (1972)

  11. Grubb, G.: Distributions and operators, Graduate Texts in Mathematics, vol. 252. Springer, New York (2009)

    Google Scholar 

  12. Harrington, P.S.: Sobolev estimates for the Cauchy-Riemann complex on \(C^1\) pseudoconvex domains. Math. Z. 262, 199–217 (2009)

    Article  MathSciNet  Google Scholar 

  13. Harrington, P.S., Raich, A.: A remark on boundary estimates on unbounded \(Z(q)\) domains in \(\mathbb{C}^n\). Complex Var. Elliptic Equ. 62, 1192–1203 (2017)

    Article  MathSciNet  Google Scholar 

  14. Harrington, P.S., Raich, A.S.: Closed range for \(\overline{\partial }\) and \(\overline{\partial }_b\) on bounded hypersurfaces in Stein manifolds. Ann. Inst. Fourier (Grenoble) 65, 1711–1754 (2015)

    Article  MathSciNet  Google Scholar 

  15. Ho, L.-H.: \(\overline{\partial }\)-problem on weakly \(q\)-convex domains. Math. Ann. 290, 3–18 (1991)

    Article  MathSciNet  Google Scholar 

  16. Hörmander, L.: \(L^{2}\) estimates and existence theorems for the \(\bar{\partial }\) operator. Acta Math. 113, 89–152 (1965)

    Article  MathSciNet  Google Scholar 

  17. Hörmander, L.: An introduction to complex analysis in several variables, third ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, (1990)

  18. Hörmander, L.: The null space of the \(\overline{\partial }\)-Neumann operator. Ann. Inst. Fourier (Grenoble) 54, 1305–1369 (2004). (xiv, xx)

    Article  MathSciNet  Google Scholar 

  19. Kohn, J.J.: Harmonic integrals on strongly pseudo-convex manifolds. I. Ann. of Math. (2) 78, 112–148 (1963)

    Article  MathSciNet  Google Scholar 

  20. Krantz, S.G., Parks, H.R.: Distance to \(C^{k}\) hypersurfaces. J. Differential Equations 40, 116–120 (1981)

    Article  MathSciNet  Google Scholar 

  21. Laurent-Thiébaut, C., Shaw, M.-C.: On the Hausdorff property of some Dolbeault cohomology groups. Math. Z. 274, 1165–1176 (2013)

    Article  MathSciNet  Google Scholar 

  22. Li, X., Shaw, M.-C.: The \(\overline{\partial }\)-equation on an annulus with mixed boundary conditions. Bull. Inst. Math. Acad. Sin. (N.S.) 8, 399–411 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Shaw, M.-C.: Global solvability and regularity for \(\bar{\partial }\) on an annulus between two weakly pseudoconvex domains. Trans. Amer. Math. Soc. 291, 255–267 (1985)

    MathSciNet  MATH  Google Scholar 

  24. Shaw, M.-C.: The closed range property for \(\overline{\partial }\) on domains with pseudoconcave boundary, Complex analysis, pp. 307–320. Birkhäuser/Springer Basel AG, Basel, Trends Math. (2010)

    MATH  Google Scholar 

  25. Stein, E.M.: Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., (1970)

  26. Straube, E.J.: Lectures on the \(L^2\)-Sobolev theory of the \(\overline{\partial }\)-Neumann problem, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, (2010)

Download references

Acknowledgements

We thank Peter Ebenfelt and László Lempert for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip S. Harrington.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Debraj Chakrabarti was partially supported by NSF Grant DMS-1600371.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, D., Harrington, P.S. A Modified Morrey-Kohn-Hörmander Identity and Applications to the \(\overline{\partial }\)-Problem. J Geom Anal 31, 9639–9676 (2021). https://doi.org/10.1007/s12220-021-00623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00623-2

Mathematics Subject Classification

Navigation