Skip to main content

Advertisement

Log in

Ultrasound: a suitable technology to improve the extraction and techno-functional properties of vegetable food proteins

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Vegetable-based proteins may be extracted from different sources using different extraction methods, among them, ultrasound-assisted extraction stands out. This review presents the current knowledge on ultrasound-assisted extraction (UAE) and the functional properties of extracted vegetable proteins. Ultrasound generates cavitation in a liquid medium, defined as gas and vapor microbubbles collapse under pressure changes large enough to separate them in the medium. Cavitation facilitates the solvent and solid interaction, increasing yield and reducing extraction periods and temperature used. Moreover, ultrasound treatment changed extracted protein properties such as solubility, hydrophobicity, emulsifying and foam, water and oil absorption capacity, viscosity, and gelatinization. Ultrasound-assisted extraction is a promising technique for the food technology sector, presenting low environmental impact, lower energy and solvent consumption, and it is in accordance with green chemistry technology and sustainable concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chemat F, Zill-E-Huma, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835. https://doi.org/10.1016/j.ultsonch.2010.11.0232010.11.023

  2. Patist A, Bates D (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innov Food Sci Emerg Technol 9:147–154. https://doi.org/10.1016/j.ifset.2007.07.0042007.07.004

  3. Westhoek H, Lesschen JP, Rood T et al (2014) Food choices, health and environment: effects of cutting Europe’s meat and dairy intake. Glob Environ Chang 26:196–205. https://doi.org/10.1016/j.gloenvcha.2014.02.004

  4. Gerber PJ, Steinfeld H, Henderson B et al (2013) The aggregate picture. In: Food and Agriculture Organization (ed) Tackling climate change through livestock - A global assessment of emissions and mitigation opportunities, 27th edn. Food & Agriculture Organization of the UN - FAO, Rome, pp 14–21.

  5. FAO (2020) Emissions intensities. In: Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/EI/visualize. Accessed 11 Feb 2021

  6. Mattila P, Mäkinen S, Eurola M et al (2018) Nutritional value of commercial protein-rich plant products. Plant Foods Hum Nutr 73:108–115. https://doi.org/10.1007/s11130-018-0660-7

  7. Wen C, Zhang J, Yao H et al (2019) Advances in renewable plant-derived protein source: The structure, physicochemical properties affected by ultrasonication. Ultrason Sonochem 53:83–98. https://doi.org/10.1016/j.ultsonch.2018.12.036

  8. Sedlar T, Čakarević J, Tomić J, Popović L (2020) Vegetable by-products as new sources of functional proteins. Plant Foods Hum Nutr. https://doi.org/10.1007/s11130-020-00870-8

  9. Damodaran S (2010) Aminoácidos, Peptídeos e Proteínas. In: Damodaran S, Parkin KL, Fennema OR (eds) Química de Alimentos de Fennema, 4th edn. Artmed, Porto Alegre, pp 179–262

  10. Pojić M, Mišan A, Tiwari B (2018) Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci Technol 75:93–104. https://doi.org/10.1016/j.tifs.2018.03.010

  11. Vilkhu K, Manasseh R, Mawson R, Ashokkumar M (2011) Ultrasonic recovery and modification of food ingredients. In: Feng H, Barbosa-Cánovas GV, Weiss J (eds) Ultrasound technologies for food and bioprocessing, 1st edn. Springer, New York, pp 345–368

  12. Ojha KS, Aznar R, O’Donnell C, Tiwari BK (2020) Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC - Trends Anal Chem 122:1–10. https://doi.org/10.1016/j.trac.2019.115663

  13. Guo L, Sun Y, Zhu Y et al (2020) The antibacterial mechanism of ultrasound in combination with sodium hypochlorite in the control of Escherichia coli. Food Res Int 119:1–7. https://doi.org/10.1016/j.foodres.2019.108887

  14. Iorio MC, Bevilacqua A, Corbo MR et al (2019) A case study on the use of ultrasound for the inhibition of Escherichia coli O157:H7 and Listeria monocytogenes in almond milk. Ultrason Sonochem 52:477–483. https://doi.org/10.1016/j.ultsonch.2018.12.0262018.12.026

  15. Khandpur P, Gogate PR (2016) Evaluation of ultrasound based sterilization approaches in terms of shelf life and quality parameters of fruit and vegetable juices. Ultrason Sonochem 29:337–353. https://doi.org/10.1016/j.ultsonch.2015.10.0082015.10.008

  16. Martini S (2013) Sonocrystallization of fats. In: Sonocrystallization of fats, 1st edn. Springer, New York, pp 41–62

  17. Zou Y, Shi H, Xu P et al (2019) Combined effect of ultrasound and sodium bicarbonate marination on chicken breast tenderness and its molecular mechanism. Ultrason Sonochem 59:1–8. https://doi.org/10.1016/j.ultsonch.2019.1047352019.104735

  18. Fallavena LP, Ferreira Marczak LD, Mercali GD (2020) Ultrasound application for quality improvement of beef Biceps femoris physicochemical characteristics. LWT 118:1–7. https://doi.org/10.1016/j.lwt.2019.1088172019.108817

  19. O’Sullivan J, Murray B, Flynn C, Norton I (2016) The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocoll 53:141–154. https://doi.org/10.1016/j.foodhyd.2015.02.0092015.02.009

  20. Cichoski AJ, Silva MS, Leães YSV et al (2019) Ultrasound: a promising technology to improve the technological quality of meat emulsions. Meat Sci 148:150–155. https://doi.org/10.1016/j.meatsci.2018.10.0092018.10.009

  21. Chemat F, Rombaut N, Sicaire AG et al (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560. https://doi.org/10.1016/j.ultsonch.2016.06.0352016.06.035

  22. Hu H, Wu J, Li-Chan ECY et al (2013) Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocoll 30:647–655. https://doi.org/10.1016/j.foodhyd.2012.08.0012012.08.001

  23. Hu H, Cheung IWY, Pan S, Li-chan ECY (2015) Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean b-conglycinin and glycinin. Food Hydrocoll 45:102–110. https://doi.org/10.1016/j.foodhyd.2014.11.0042014.11.004

  24. Leong T, Ashokkumar M, Kentish S (2011) The fundamentals of power ultrasound - a review. Acoust Aust 39:54–63

    Google Scholar 

  25. Lee J, Ashokkumar M, Yasui K et al (2011) Development and optimization of acoustic bubble structures at high frequencies. Ultrason Sonochem 18:92–98. https://doi.org/10.1016/j.ultsonch.2010.03.0042010.03.004

  26. Jambrak AR, Mason TJ, Lelas V et al (2014) Effect of ultrasound treatment on particle size and molecular weight of whey proteins. J Food Eng 121:15–23. https://doi.org/10.1016/j.jfoodeng.2013.08.0122013.08.012

  27. Picó Y (2013) Ultrasound-assisted extraction for food and environmental samples. Trends Anal Chem 43:84–99. https://doi.org/10.1016/j.trac.2012.12.0052012.12.005

  28. Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21:323–331. https://doi.org/10.1016/j.tifs.2010.04.0032010.04.003

  29. Gogate PR, Tayal RK, Pandit AB (2006) Cavitation: a technology on the horizon. Curr Sci 91:35–46.

  30. Mason TJ (2009) Sonochemistry - beyond synthesis. Educ Chem 46:140–144

    CAS  Google Scholar 

  31. Wen C, Zhang J, Zhang H et al (2018) Advances in ultrasound assisted extraction of bioactive compounds from cash crops – a review. Ultrason Sonochem 48:538–549. https://doi.org/10.1016/j.ultsonch.2018.07.0182018.07.018

  32. Dzah CS, Duan Y, Zhang H et al (2020) The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: a review. Food Biosci 35:1–9. https://doi.org/10.1016/j.fbio.2020.1005472020.100547

  33. Santos HM, Lodeiro C, Capelo-Martínez JL (2009) The power of ultrasound. In: Capelo-Marínez J-L (ed) Ultrasound in chemistry: analytical applications. Willey-VCH, Weinheim, pp 1–16

  34. Castro MDL, Capote FP (2007) Analytical applications of ultrasound, 1st edn. Elsevier Science, Amsterdam

  35. Li S, Ma H, Guo Y et al (2018) A new kinetic model of ultrasound-assisted pretreatment on rice protein. Ultrason - Sonochem 40:644–650. https://doi.org/10.1016/j.ultsonch.2017.07.0102017.07.010

  36. Golly MK, Ma H, Yuqing D et al (2020) Effect of multi-frequency countercurrent ultrasound treatment on extraction optimization, functional and structural properties of protein isolates from walnut (Juglans regia L.) meal. J Food Biochem 44:1–20. https://doi.org/10.1111/jfbc.13210

  37. Chandra-Hioe MV, Elvira J, Arcot J (2019) Ascorbic acid effectively improved lutein extraction yield from Australian sweet lupin flour. Plant Foods Hum Nutr 74:34–39. https://doi.org/10.1007/s11130-018-0696-8

  38. Gogate PR, Kabadi AM (2009) A review of applications of cavitation in biochemical engineering/biotechnology. Biochem Eng J 44:60–72. https://doi.org/10.1016/j.bej.2008.10.0062008.10.006

  39. Hagenson LC, Doraiswamy LK (1998) Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system. Chem Eng Sci 53:148–148. https://doi.org/10.1016/S0009-2509(97)00193-0

  40. Pingret D, Fabiano-Tixier AS, Chemat F (2013) Degradation during application of ultrasound in food processing: a review. Food Control 31:593–606. https://doi.org/10.1016/j.foodcont.2012.11.0392012.11.039

  41. Jambrak AR, Lelas V, Mason TJ et al (2009) Physical properties of ultrasound treated soy proteins. J Food Eng 93:386–393. https://doi.org/10.1016/j.jfoodeng.2009.02.0012009.02.001

  42. Preece KE, Hooshyar N, Krijgsman A et al (2017) Intensified soy protein extraction by ultrasound. Chem Eng Process 113:94–101. https://doi.org/10.1016/j.cep.2016.09.0032016.09.003

  43. Vinatoru M, Toma M, Radu O et al (1997) The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrason Sonochem 4:135–139. https://doi.org/10.1016/S1350-4177(97)83207-5

  44. Zhu K, Sun X, Zhou H (2009) Optimization of ultrasound-assisted extraction of defatted wheat germ proteins by reverse micelles. J Cereal Sci 50:266–271. https://doi.org/10.1016/j.jcs.2009.06.0062009.06.006

  45. Preece KE, Hooshyar N, Krijgsman AJ, et al (2017) Pilot-scale ultrasound-assisted extraction of protein from soybean processing materials shows it is not recommended for industrial usage. J Food Eng 206:1–12. https://doi.org/10.1016/j.jfoodeng.2017.02.002

  46. Li K, Ma H, Li S, et al (2017) Effect of ultrasound on alkali extraction protein from rice dreg flour. J Food Process Eng 40:1–9. https://doi.org/10.1111/jfpe.12377

  47. Karki B, Lamsal BP, Jung S, et al (2010) Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. J Food Eng 96:270–278. https://doi.org/10.1016/j.jfoodeng.2009.07.023

  48. Carrera C, Ruiz-rodríguez A, Palma M, Barroso CG (2015) Ultrasound-assisted extraction of amino acids from grapes. Ultrason Sonochem 22:499–505. https://doi.org/10.1016/j.ultsonch.2014.05.021

  49. Wang F, Zhang Y, Xu L, Ma H (2020) An efficient ultrasound-assisted extraction method of pea protein and its effect on protein functional properties and biological activities. LWT-Food Sci Technol 127:1–8. https://doi.org/10.1016/j.lwt.2020.109348

  50. Görgüç A, Özer P, Yılmaz FM (2020) Simultaneous effect of vacuum and ultrasound assisted enzymatic extraction on the recovery of plant protein and bioactive compounds from sesame bran. J Food Compos Anal 87:1–10. https://doi.org/10.1016/j.jfca.2020.103424

  51. Bernardi S, Kalschne DL, Menegotto ALL, et al (2020) Feasibility of ultrasound-assisted optimized process of high purity rice bran protein extraction. Cienc Rural 50:1–13. https://doi.org/10.1590/0103-8478cr20200012

  52. Işçimen EM, Hayta M (2018) Optimisation of ultrasound assisted extraction of rice bran proteins: effects on antioxidant and antiproliferative properties. Qual Assur Saf Crop Foods 10:165–174. https://doi.org/10.3920/QAS2017.1186

  53. Lv S, Taha A, Hu H, et al (2019) Effects of ultrasonic-assisted extraction on the physicochemical properties of different walnut proteins. Molecules 24:1–16. https://doi.org/10.3390/molecules24234260

  54. Ochoa-Rivas A, Nava-Valdez Y, Serna-Saldívar SO, Chuck-Hernández C (2017) Microwave and ultrasound to enhance protein extraction from peanut flour under alkaline conditions: effects in yield and functional properties of protein isolates. Food Bioprocess Technol 10:543–555. https://doi.org/10.1007/s11947-016-1838-3

  55. Abugabr Elhag HEE, Naila A, Nour AH, et al (2019) Optimization of protein yields by ultrasound assisted extraction from Eurycoma longifolia roots and effect of agitation speed. J King Saud Univ - Sci 31:913–930. https://doi.org/10.1016/j.jksus.2018.05.011

  56. Dabbour M, He R, Ma H, Musa A (2018) Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties. J Food Process Eng 41:1–11. https://doi.org/10.1111/jfpe.12799

  57. Liu Y, Ma XY, Liu LN, et al (2019) Ultrasonic-assisted extraction and functional properties of wampee seed protein. Food Sci Technol 39:324–331. https://doi.org/10.1590/fst.03918

  58. Oliveira APH, Omura MH, Barbosa É de AA, et al (2020) Combined adjustment of pH and ultrasound treatments modify techno-functionalities of pea protein concentrates. Colloid Surf A-Physicochem Eng Asp 603:1–15. https://doi.org/10.1016/j.colsurfa.2020.125156

  59. Jambrak AR, Mason TJ, Lelas V, et al (2008) Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. J Food Eng 86:281–287. https://doi.org/10.1016/j.jfoodeng.2007.10.004

  60. Jia J, Ma H, Zhao W, et al (2010) The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chem 119:336–342. https://doi.org/10.1016/j.foodchem.2009.06.036

  61. Chandrapala J, Zisu B, Kentish S, Ashokkumar M (2012) The effects of high-intensity ultrasound on the structural and functional properties of α-lactalbumin, β-lactoglobulin and their mixtures. Food Res Int 48:940–943. https://doi.org/10.1016/j.foodres.2012.02.021

  62. Jiang L, Wang J, Li Y, et al (2014) Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Res Int 62:595–601. https://doi.org/10.1016/j.foodres.2014.04.022

  63. Zhang Q, Tu Z, Xiao H, et al (2014) Processing Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food Bioprod Process 92:30–37. https://doi.org/10.1016/j.fbp.2013.07.006

  64. Xiong T, Xiong W, Ge M, et al (2018) Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Res Int 109:260–267. https://doi.org/10.1016/j.foodres.2018.04.044

  65. Malik MA, Sharma HK, Saini CS (2017) High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: effect on physicochemical and functional properties. Ultrason Sonochem 39:511–519. https://doi.org/10.1016/j.ultsonch.2017.05.026

  66. Higuera-Barraza OA, Toro-Sanchez CL Del, Ruiz-Cruz S, Márquez-Ríos E (2016) Effects of high-energy ultrasound on the functional properties of proteins. Ultrason Sonochem 31:558–562. https://doi.org/10.1016/j.ultsonch.2016.02.007

  67. Cabra V, Arreguín R, Farres A (2008) Emulsifying Properties of Proteins. Boletín la Soc Química México 2:80–89. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.492.5540&rep=rep1&type=pdf. Accessed 23 Feb 2021

  68. Kamalanathan ID, Martin PJ (2016) Competitive adsorption of surfactant-protein mixtures in a continuous stripping mode foam fractionation column. Chem Eng Sci 146:291–301. https://doi.org/10.1016/j.ces.2016.03.002

  69. Zhang L, Pan Z, Shen K, Cai X (2018) Influence of ultrasound-assisted alkali treatment on the structural properties and functionalities of rice protein. J Cereal Sci 79:204–209. https://doi.org/10.1016/j.jcs.2017.10.013

  70. Morales R, Martínez KD, Ruiz-henestrosa VMP, Pilosof AMR (2015) Modification of foaming properties of soy protein isolate by high ultrasound intensity: particle size effect. Ultrason Sonochem 26:48–55. https://doi.org/10.1016/j.ultsonch.2015.01.011

  71. Amiri A, Sharifian P, Soltanizadeh N (2018) Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins. Int J Biol Macromol 111:139–147. https://doi.org/10.1016/j.ijbiomac.2017.12.167

  72. Hu H, Li-Chan ECY, Wan L, et al (2013) The effect of high intensity ultrasonic pre-treatment on the properties of soybean protein isolate gel induced by calcium sulfate. Food Hydrocoll 32:303–311. https://doi.org/10.1016/j.foodhyd.2013.01.016

  73. Köhn CR, Almeida JC, Schmidt MM, et al (2016) Evaluation of water absorption capacity of ingredients and additives used in the meat industry submitted to different saline concentrations and ultrasound. Int Food Res J 23:653–659. http://www.ifrj.upm.edu.my/23%20(02)%202016/(27).pdf

  74. Li X, Da S, Li C, et al (2018) Effects of high-intensity ultrasound pretreatment with different levels of power output on the antioxidant properties of alcalase hydrolyzates from Quinoa (Chenopodium quinoa Willd.) protein isolate. Cereal Chem 95:518–526. https://doi.org/10.1002/cche.10055

  75. Flores-Jiménez NT, Ulloa JA, Silvas JEU, et al (2019) Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate. Food Res Int 121:947–956. https://doi.org/10.1016/j.foodres.2019.01.025

  76. Li K, Kang ZL, Zhao YY, et al (2014) Use of high-intensity ultrasound to improve functional properties of batter suspensions prepared from PSE-like chicken breast meat. Food Bioprocess Technol 7:3466–3477. https://doi.org/10.1007/s11947-014-1358-y

  77. Zisu B, Bhaskaracharya R, Kentish S, Ashokkumar M (2010) Ultrasonic processing of dairy systems in large scale reactors. Ultrason Sonochem 17:1075–1081. https://doi.org/10.1016/j.ultsonch.2009.10.014

  78. Lee WT, Weisell R, Albert J, et al (2016) Research approaches and methods for evaluating the protein quality of human foods proposed by an FAO expert working group in 2014. J Nutr 146:929–932. https://doi.org/10.3945/jn.115.222109

  79. Sullivan AC, Pangloli P, Dia VP (2018) Impact of ultrasonication on the physicochemical properties of sorghum kafirin and in vitro pepsin-pancreatin digestibility of sorghum gluten-like flour. Food Chem 240:1121–1130. https://doi.org/10.1016/j.foodchem.2017.08.046

  80. Martínez-Velasco A, Lobato-Calleros C, Hernández-Rodríguez BE, et al (2018) High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: effect on surface properties, foaming ability and structural changes. Ultrason Sonochem 44:97–105. https://doi.org/10.1016/j.ultsonch.2018.02.007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane Canan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 133 kb)

ESM 2

(DOCX 395 kb)

ESM 3

(DOCX 149 kb)

ESM 4

(DOCX 88 kb)

ESM 5

(DOCX 157 kb)

ESM 6

(DOCX 213 kb)

ESM 7

(DOCX 53 kb)

ESM 8

(DOCX 42 kb)

ESM 9

(DOCX 315 kb)

ESM 10

(DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardi, S., Lupatini-Menegotto, A.L., Kalschne, D.L. et al. Ultrasound: a suitable technology to improve the extraction and techno-functional properties of vegetable food proteins. Plant Foods Hum Nutr 76, 1–11 (2021). https://doi.org/10.1007/s11130-021-00884-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-021-00884-w

Keywords

Navigation