Skip to main content
Log in

Thermal Behavior of Some Indian Coals: Inferences from Simultaneous Thermogravimetry–Calorimetry and Rock–Eval

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

In this work, thermal behaviors of ten coal samples (across different thermal maturity levels) collected from five different open cast mines in the Jharia and Raniganj basins, India, were examined using differential scanning calorimeter (DSC), thermogravimetry (TG–DTG), Rock–Eval, and organo-petrographic techniques. Rank played a critical factor in controlling their thermal behavior, and with increasing coal rank the combustion parameters shifted towards higher temperatures. The oil-window mature non-coking coals were marked by least ignition and burnout temperatures, least DSC Tpeak, DTG Tpeak, and maximum reactivity. In contrast, the coking-coal samples of peak-oil window and condensate wet–gas window stages of maturity, because of their higher thermal maturity level and lower reactivity, required higher temperatures for combustion. Among the peak-oil window mature coking coals, one sample (C4) showed distinct lower combustion parameters relative to others, although vitrinite reflectance (Ro; %) and Rock–Eval pyrolysis Tmax showed similar results as the other coals. This sample was marked by higher reactive maceral content. Highest combustion parameters and least reactivity were shown by the Jhama sample (baked coal), followed by the condensate wet–gas window mature coking coals. The Rock–Eval S4 Tpeak clearly resolved the coal samples with distinct maturities and complemented the results from TG–DTG–DSC thermograms. Our results indicate that Rock–Eval S4Tpeak can be used to decipher convincingly the thermal maturity level of coals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Behar, F., & Vandenbroucke, M. (1987). Chemical modelling of kerogens. Organic Geochemistry, 11, 15–24.

    Google Scholar 

  • Binner, E., Zhang, L., Li, C. Z., & Bhattacharya, S. (2011). In-situ observation of the combustion of air-dried and wet Victorian brown coal. Proceedings of the Combustion Institute, 33(2), 1739–1746.

    Google Scholar 

  • Cai, J., Wang, Y., Zhou, L., & Huang, Q. (2008). Thermogravimetric analysis and kinetics of coal/plastic blends during co-pyrolysis in nitrogen atmosphere. Fuel Processing Technology, 89(1), 21–27.

    Google Scholar 

  • Carvajal-Ortiz, H., & Gentzis, T. (2015). Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: Data quality revisited. International Journal of Coal Geology, 152, 113–122.

    Google Scholar 

  • Chen, H., Li, B., & Zhang, B. (2000). Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis. Fuel, 79(13), 1627–1631.

    Google Scholar 

  • Chen, J. Y., & Sun, X. X. (1987). Determination of the devolatilization index and combustion characteristic index of pulverized coals. Power Engineering, 5, 13–18.

    Google Scholar 

  • Chen, Y., & Mori, S. (1995). Estimating the combustibility of various coals by TG-DTA. Energy and Fuels, 9(1), 71–74.

    Google Scholar 

  • Choudhury, N., Biswas, S., Sarkar, P., Kumar, M., Ghosal, S., Mitra, T., et al. (2008). Influence of rank and macerals on the burnout behavior of pulverized Indian coal. International Journal of Coal Geology, 74(2), 145–153.

    Google Scholar 

  • Choudhury, N., Boral, P., Mitra, T., Adak, A. K., Choudhury, A., & Sarkar, P. (2007). Assessment of nature and distribution of inertinite in Indian coals for burning characteristics. International Journal of Coal Geology, 74(2), 141–152.

    Google Scholar 

  • Cloke, M., & Lester, E. (1994). Characterization of coals for combustion using petrographic analysis: A review. Fuel, 73(3), 315–320.

    Google Scholar 

  • Cloke, M., Lester, E., & Belghazi, A. (2002). Characterisation of the properties of size fractions from ten world coals and their chars produced in a drop tube furnace. Fuel, 81(5), 699–708.

    Google Scholar 

  • Das, T. K. (2001). Thermogravimetric characterisation of maceral concentrates of Russian coking coals. Fuel, 80(1), 97–106.

    Google Scholar 

  • Engin, B., & Atakül, H. (2018). Air and oxy-fuel combustion kinetics of low rank lignites. Journal of the Energy Institute, 91(2), 311–312.

    Google Scholar 

  • Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Pauletand, J., & Boutefeu, A. (1977). Methoderapide de caracterisation des roches meres, de leur potential petrolier et de leu degred’evolution. Revue De l’Institut Francais Du Petrole, 32, 23–42.

    Google Scholar 

  • Ghetti, P., Ricca, L., & Angelini, L. (1996). Thermal analysis of biomass and corresponding pyrolysis products. Fuel, 75, 565–573.

    Google Scholar 

  • Guo, L., Zhai, M., Wang, Z., Zhang, Y., & Dong, P. (2019). Comparison of bituminous coal and lignite during combustion: combustion performance, coking and slagging characteristics. Journal of the Energy Institute, 92(3), 802–812.

    Google Scholar 

  • Hansen, L. A. (1999). Impacts of mineral impurities in solid fuel combustion (pp. 341–356). Norwell, MA: Kluwer Academic/Plenum Press.

    Google Scholar 

  • Hazra, B., Varma, A. K., Bandopadhyay, A. K., Mendhe, V. A., Singh, B. D., Saxena, V. K., et al. (2015). Petrographic insights of organic matter conversion of Raniganj basin shales, India. International Journal of Coal Geology, 150–151, 193–209.

    Google Scholar 

  • Hazra, B., Dutta, S., & Kumar, S. (2017). TOC calculation of organic matter rich sediments using Rock-Eval pyrolysis: Critical consideration and insights. International Journal of Coal Geology, 169, 106–115.

    Google Scholar 

  • Hazra, B., Wood, D. A., Mani, D., Singh, P. K., & Singh, A. K. (2019). Evaluation of shale source rocks and reservoirs. Berlin: Springer. https://doi.org/10.1007/978-3-030-13042-8.

  • Hazra, B., Karacan, C. Ö., Mani, D., Singh, P. K., & Singh, A. K. (2019b). Insights from Rock-Eval analysis on the influence of sample weight on Hydrocarbon-generation from Lower Permian organic matter rich rocks, West Bokaro basin, India. Marine and Petroleum Geology, 106, 160–170.

    Google Scholar 

  • Hazra, B., Singh, A. K., Singh, P. K., Mani, D., Boral, P., & Das, M. (2019c). Hydrocarbon-generation potential and thermal-maturity of few Indian coals: Inferences from organo-petrography and Rock-Eval. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2019.1695981.

    Article  Google Scholar 

  • Hazra, B., Sarkar, P., Chakraborty, P., Mahato, A., Raghuvanshi, G., Singh, P. K., et al. (2020). Coal combustion analysis using Rock-Eval: Importance of S4-Tpeak. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-020-05476-7.

    Article  Google Scholar 

  • ICCP. (2001). The new inertinite classification (ICCP System 1994). Fuel, 80(4), 459–471.

    Google Scholar 

  • İnan, S., Henderson, S., & Qathami, S. (2017). Oxidation Tmax: A new thermal maturity indicator for hydrocarbon source rocks. Organic Geochemistry, 113, 254–261.

    Google Scholar 

  • IS 1350. (1984). Indian standard on methods for test of coal and coke: Part I, proximate analysis. New Delhi, India: Bureau of Indian Standards.

    Google Scholar 

  • IS 9127. (2002). Methods for the petrographic analysis of bituminous coal and anthracite—Part 3: Method of determining maceral group composition. New Delhi, India: Bureau of Indian Standards.

    Google Scholar 

  • IS 9127. (2004). Methods for the petrographic analysis of bituminous coal and anthracite—Part 5: Method of determining microscopically the reflectance of vitrinite. New Delhi, India: Bureau of Indian Standards.

    Google Scholar 

  • Janković, B., Manić, N., Radović, I., Janković, M., & Rajačić, M. (2019). Model-free and model-based kinetics of the combustion process of low rank coals with high ash contents using TGA-DTG-DTA-MS and FTIR techniques. Thermochimica Acta, 679, 178337.

    Google Scholar 

  • Jarvie, D. M. (2012). Shale resource systems for oil and gas: part 1—shale–gas resource systems. In: Breyert, J.A. (Ed.) Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97, 69–87.

    Google Scholar 

  • Jayaraman, K., Kok, M. V., & Gokalp, I. (2017). Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends. Renewable Energy, 101, 293–300.

    Google Scholar 

  • Kök, M. V. (2005). Temperature–controlled combustion and kinetics of different rank coal samples. Journal of Thermal Analysis and Calorimetry, 79, 175–180.

    Google Scholar 

  • Kumar, M., Sabbarwal, S., Mishra, P. K., & Upadhyay, S. N. (2019). Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L.) using thermo-gravimetric and differential scanning calorimetric studies. Bioresource Technology, 279, 262–270.

    Google Scholar 

  • Li, X. G., Lv, Y., Ma, B. G., Jian, S. W., & Tan, H. B. (2011). Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Bioresource Technology, 102(20), 9783–9787.

    Google Scholar 

  • López-González, D., Fernandez-Lopez, M., Valverde, J. L., & Sanchez-Silva, L. (2014). Kinetic analysis and thermal 18 characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry. Applied Energy, 114, 227–237.

    Google Scholar 

  • Misra, S., Varma, A. K., Hazra, B., Biswas, S., & Samad, S. K. (2019). The influence of the thermal aureole asymmetry on hydrocarbon generative potential of coal beds: Insights from Raniganj Basin, West Bengal, India. International Journal of Coal Geology, 206, 91–105.

    Google Scholar 

  • Mohalik, N. K., Lester, E., & Lowndes, I. S. (2016). Review of experimental methods to determine spontaneous combustion susceptibility of coal–Indian context. International Journal of Mining, Reclamation and Environment, 31(5), 301–332.

    Google Scholar 

  • Moon, C., Sung, Y., Ahn, S., Kim, T., Choi, G., & Kim, D. (2013). Effect of blending ratio on combustion performance in blends of biomass and coals of different ranks. Experimental Thermal and Fluid Science, 47, 232–240.

    Google Scholar 

  • Oka, N., Murayama, T., Matsuoka, H., Yamada, S., Yamada, T., Shinozaki, S., et al. (1987). The influence of rank and maceral composition on ignition and char burnout of pulverised coal. Fuel Processing Technology, 15, 213–224.

    Google Scholar 

  • Ozbas, K. E., Kök, M. V., & Hicyilmaz, C. (2003). DSC study of the combustion properties of Turkish coals. Journal of Thermal Analysis and Calorimetry, 71, 849–856.

    Google Scholar 

  • Peters, K. E. & Cassa, M. R. (1994). Applied source rock geochemistry. In: Magoon LB, Dow WG (Eds.), The Petroleum System d from Source to Trap, AAPG Memoir, 60, 93–120.

  • Qiu, J. A., Li, F., & Zhang, C. G. (1999). Mineral transformation during combustion of coal blends. International Journal of Energy Research, 23(5), 453–463.

    Google Scholar 

  • Raaj, S. S., Arumugam, S., Muthukrishnan, M., Krishnamoorthya, S., & Anantharamanb, N. (2016). Characterization of coal blends for effective utilization in thermal power plants. Applied Thermal Engineering, 102, 9–16.

    Google Scholar 

  • Russell, N., Beeley, T., Man, C., Gibbins, J., & Williamson, J. (1998). Development of TG measurements of intrinsic char combustion reactivity for industrial and research purposes. Fuel Process Technology, 57, 113–130.

    Google Scholar 

  • Sahu, S. G., Sarkar, P., Chakraborty, N., & Adak, A. K. (2010). Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Processing Technology, 91(3), 369–378.

    Google Scholar 

  • Schmal, D. (1989). Spontaneous heating of stored coal. In C. R. Nelson (Ed.), Chemistry of coal weathering (pp. 133–215). Amsterdam: Elsevier.

    Google Scholar 

  • Shi, Q., Qina, B., Bid, Q., & Qud, B. (2018). An experimental study on the effect of igneous intrusions on chemical structure and combustion characteristics of coal in Daxing Mine, China. Fuel, 226, 307–315.

    Google Scholar 

  • Shibaoka, M. (1969). An investigation of the combustion process of single coal particles. Journal of the Institute of Fuel, 42, 59–66.

    Google Scholar 

  • Slovak, V., & Taraba, B. (2010). Effect of experimental conditions on parameters derived from TG-DSC measurements of low-temperature oxidation of coal. Journal of Thermal Analysis and Calorimetry, 101(2), 641–646.

    Google Scholar 

  • Su, S., Pohl, J. H., Holcombe, D., & Hart, J. A. (2001). A proposed maceral index to predict combustion behavior of coal. Fuel, 80(5), 699–706.

    Google Scholar 

  • Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R., & Robert, P. (1998). Organic petrology, 704. Berlin: Gerbrüder Borntraeger.

    Google Scholar 

  • Thomas, C. G., Gosnell, M. E., Gawronski, E., Phont-anant, D., & Shibaoka, M. (1993). The behavior of inertinite macerals under pulverized fuel (pf) combustion conditions. Organic Geochemistry, 20(6), 779–788.

    Google Scholar 

  • Ulloa, C., Borrego, A. G., Helle, S., Gordon, A. L., & García, X. (2005). Char characterization and DTF assays as tools to predict burnout of coal blends in power plants. Fuel, 84(2–3), 247–257.

    Google Scholar 

  • Urych, B. (2014). Determination of kinetic parameters of coal pyrolysis to simulate the process of underground coal gasification (UCG). Journal of Sustainable Mining, 13(1), 3–9.

    Google Scholar 

  • Vamvuka, D., & Sfakiotakis, S. (2011). Combustion behavior of biomass fuels and their blends with lignite. Thermochimica Acta, 526(1–2), 192–199.

    Google Scholar 

  • Varma, A. K., Kumar, M., Saxena, V. K., Sarkar, A., & Banerjee, S. K. (2014). Petrographic controls on combustion behavior of inertinite rich coal and char and fly ash formation. Fuel, 128, 199–209.

    Google Scholar 

  • Technologies, V. (2003). Rock-Eval 6 operator manual. France: Vinci Technologies.

    Google Scholar 

  • Wang, J., Zhang, S., Guo, X., Dong, A. X., Chen, C., Xiong, S., et al. (2012). Thermal behaviors and kinetics of pingshuo coal/biomass blends during copyrolysis and cocombustion. Energy and Fuels, 26(12), 7120–7126.

    Google Scholar 

  • Wang, Y., Song, Y., Zhi, K., Li, Y., Teng, Y., He, R., & Liu, Q. (2017). Combustion kinetics of Chinese Shenhua raw coal and its pyrolysis carbocoal. Journal of the Energy Institute, 90(4), 624–633.

    Google Scholar 

  • Zhang, L., Hower, J. C., & Liua, W. L. (2017). Non-isothermal TG-DSC study on prediction of caking properties of vitrinite-rich concentrates of bituminous coals. Fuel Processing Technology, 156, 500–504.

    Google Scholar 

  • Zheng, G., & Kozinski, J. A. (2000). Thermal events occurring during the combustion of biomass residue. Fuel, 79(2), 181–192.

    Google Scholar 

  • Zhao, J., Deng, J., Wang, T., Song, J., Zhang, Y., Shu, C.-M., & Zeng, Q. (2019a). Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages. Energy, 169, 587–596.

    Google Scholar 

  • Zhao, J., Deng, J., Chen, L., Wang, T., Song, J., Zhang, Y., et al. (2019b). Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation. Energy, 181, 136–147.

    Google Scholar 

  • Zhao, J., Wang, T., Deng, J., Shu, C.-M., Zeng, Q., Guo, T., & Zhang, Y. (2020). Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high temperature oxidation and in situ FTIR. Energy, 209, 118494.

    Google Scholar 

Download references

Acknowledgments

The Director CSIR- Central Institute of Mining and Fuel Research is thankfully acknowledged for giving necessary infrastructure and permission to conduct the research work. The Director, CSIR-Central Institute of Mining and Fuel Research is also acknowledged for giving B. Hazra CSIR-CIMFR in-house research grant (Project No.: MLP-93/2019-20), the funds of which were utilized to conduct the experiments. Dr. John Carranza, Editor-in-Chief, Natural Resources Research and the two anonymous reviewers are thankfully acknowledged for their review and comments, as addressing those has improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodhisatwa Hazra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, P., Hazra, B., Sarkar, P. et al. Thermal Behavior of Some Indian Coals: Inferences from Simultaneous Thermogravimetry–Calorimetry and Rock–Eval. Nat Resour Res 30, 2161–2177 (2021). https://doi.org/10.1007/s11053-021-09838-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09838-0

Keywords

Navigation