Skip to main content

Advertisement

Log in

Structure-rheology elucidation of human blood via SPP framework and TEVP modeling

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Recent work modeling the rheological behavior of human blood indicates that it has all the hallmark features of a complex material, including shear-thinning, viscoelastic behavior, a yield stress, and thixotropy. After decades of modeling steady state blood data, and the development of simple steady state models, like the Casson and Herschel-Bulkley the advancement and evolution of blood modeling to incorporate more thixo-elasto-visco-plastic (TEVP) features to accurately capture transient flow has renewed interest. With recently collected steady state and oscillatory shear flow rheological data from a DHR-3 using human blood, we show modeling efforts with a contemporary thixo-elasto-visco-plastic (TEVP) model. Best fit rheological model parameters are used to determine values for normal, healthy blood and corroborate correlations from literature. Series of physical processes (SPP) analysis is incorporated to illustrate how mechanical properties are tied to the transient, evolving microstructure of human blood and physiological parameters. Using LAOS data predictions of the structure parameter, λ is compared, and correlated with the transient elastic modulus, G t .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Apostolidis, A.J. and A.N. Beris, 2014, Modeling of the blood rheology in steady-state shear flows, J. Rheol. 58, 607–633.

    Article  CAS  Google Scholar 

  • Apostolidis, A.J. and A.N. Beris, 2016, The effect of cholesterol and triglycerides on the steady state shear rheology of blood, Rheol. Acta 55, 497–509.

    Article  CAS  Google Scholar 

  • Apostolidis, A.J., M.J. Armstrong, and A.N. Beris, 2015, Modeling of human blood rheology in transient shear flows, J. Rheol. 59, 275–298.

    Article  CAS  Google Scholar 

  • Armstrong, M.J., A.N. Beris, S.A. Rogers, and N.J. Wagner, 2016, Dynamic shear rheology of a thixotropic suspension: Comparison of an improved structure-based model with large amplitude oscillatory shear experiments, J. Rheol. 60, 433–450.

    Article  CAS  Google Scholar 

  • Armstrong, M.J., A.N. Beris, and N.J. Wagner, 2017, An adaptive parallel tempering method for the dynamic data-driven parameter estimation of nonlinear models, AICHE J. 63, 1937–1958.

    Article  CAS  Google Scholar 

  • Armstrong, M., J. Horner, M. Clark, M. Deegan, T. Hill, C. Keith, and L. Mooradian, 2018, Evaluating rheological models for human blood using steady state, transient, and oscillatory shear predictions, Rheol. Acta 57, 705–728.

    Article  CAS  Google Scholar 

  • Armstrong, M., 2020a, Rheology and physiology from USMA, Mendeley Data, V1.

    Google Scholar 

  • Armstrong, M., 2020b, USMA DHR-3 LAOS data, Mendeley Data, V1.

  • Banyai, S., M. Banyai, J. Falger, M. Jansen, E. Alt, K. Derfler, and R. Koppensteiner, 2001, Atorvastatin improves blood rheology in patients with familial hypercholesterolemia (FH) on long-term LDL apheresis treatment, Atherosclerosis 159, 513–519.

    Article  CAS  Google Scholar 

  • Baskurt, O.K. and H.J. Meiselman, 2003, Blood rheology and hemodynamics, Semin. Thromb. Hemost. 29, 435–450.

    Article  CAS  Google Scholar 

  • Bautista, F., J.M. de Santos, J.E. Puig, and O. Manero, 1999, Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. I. The model, J. Non-Newton. Fluid Mech. 80, 93–113.

    Article  CAS  Google Scholar 

  • Blackwell, B.C. and R.H. Ewoldt, 2014, A simple thixotropic-viscoelastic constitutive model produces unique signatures in large-amplitude oscillatory shear (LAOS), J. Non-Newton. Fluid Mech. 208, 27–41.

    Article  CAS  Google Scholar 

  • Bouchard, B.A. and P.B. Tracy, 2001, Platelets, leukocytes, and coagulation, Curr. Opin. Hematol. 8, 263–269.

    Article  CAS  Google Scholar 

  • Bureau, M., J.C. Healy, D. Bourgoin, and M. Joly, 1978, Etude expérimentale in vitro du comportement rhéologique du sang en régime transitoire a faible vitesse de cisaillement, Rheol. Acta 17, 612–625.

    Article  Google Scholar 

  • Bureau, M., J.C. Healy, D. Bourgoin, and M. Joly, 1979, Etude rhéologique en régime transitoire de quelques échantillons de sangs humains artificiellement modifies, Rheol. Acta 18, 756–768.

    Article  Google Scholar 

  • Bureau, M., J.C. Healy, D. Bourgoin, and M. Joly, 1980, Rheological hysteresis of blood at low shear rate, Biorheology 17, 191–203.

    Article  CAS  Google Scholar 

  • Carallo, C., C. Irace, M.S. De Franceschi, T. Esposito, C. Tripolino, F. Scavelli, V. Merante, and A. Gnasso, 2013, The effect of HDL cholesterol on blood and plasma viscosity in healthy subjects, Clin. Hemorheol. Microcirc. 55, 223–229.

    Article  CAS  Google Scholar 

  • Cokelet, G.R., 2011, Hemorheology and Hemodynamics, Morgan & Claypool Life Science, San Rafael, 1–17.

    Google Scholar 

  • Craveri, A., G. Tornaghi, L. Paganardi, R. Ranieri, S. Scaglioni, M. Torchiana, and M. Giovannini, 1988, Hemorheological changes in obesity, Clin. Hemorheol. Microcirc. 8, 723–736.

    Article  Google Scholar 

  • Destiana, D. and I.S. Timan, 2018, The relationship between hypercholesterolemia as a risk factor for stroke and blood viscosity measured using Digital Microcapillary®, J. Phys.: Conf. Ser 1073, 042045.

    Google Scholar 

  • Dimitriou, C.J., R.H. Ewoldt, and G.H. McKinley, 2013, Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress), J. Rheol. 57, 27–70.

    Article  CAS  Google Scholar 

  • Donley, G.J., W.W. Hyde, S.A. Rogers, and F. Nettesheim, 2019, Yielding and recovery of conductive pastes for screen printing, Rheol. Acta 58, 361–382.

    Article  CAS  Google Scholar 

  • Doolittle, R.F., 2013, The Evolution of Vertebrate Blood Clotting, University Science Books, Mill Valley.

    Google Scholar 

  • Dullaert, K. and J. Mewis, 2006, A structural kinetics model for thixotropy, J. Non-Newton. Fluid Mech. 139, 21–30.

    Article  CAS  Google Scholar 

  • Ewoldt, R.H., 2013, Defining nonlinear rheological material functions for oscillatory shear, J. Rheol. 57, 177–195.

    Article  CAS  Google Scholar 

  • Fasano, A. and A. Sequeira, 2017, Hemomath, Springer International Publishing, Cham.

    Book  Google Scholar 

  • Gyawali, P., R.S. Richards, E.U. Nwose, and P.T. Bwiti, 2012, Whole-blood viscosity and metabolic syndrome, Clin. Lipidol. 7, 709–719.

    Article  CAS  Google Scholar 

  • Horner, J.S., M.J. Armstrong, N.J. Wagner, and A.N. Beris, 2018, Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear, J. Rheol. 62, 577–591.

    Article  CAS  Google Scholar 

  • Horner, J.S., M.J. Armstrong, N.J. Wagner, and A.N. Beris, 2019, Measurements of human blood viscoelasticity and thixotropy under steady and transient shear and constitutive modeling thereof, J. Rheol. 63, 799–813.

    Article  CAS  Google Scholar 

  • Jamali, S., G.H. McKinley, and R.C. Armstrong, 2017, Microstructural rearrangements and their rheological implications in a model thixotropic elastoviscoplastic fluid, Phys. Rev. Lett. 118, 048003.

    Article  Google Scholar 

  • Késmárky, G., K. Péter, R. Miklós, and T. Kálmán, 2008, Plasma viscosity: A forgotten variable, Clin. Hemorheol. Microcirc. 39, 243–246.

    Article  Google Scholar 

  • Lee, H., W. Na, S.B. Lee, C.W. Ahn, J.S. Moon, K.C. Won, and S. Shin, 2019, Potential diagnostic hemorheological indexes for chronic kidney disease in patients with Type 2 diabetes, Front. Physiol. 10, 1062.

    Article  Google Scholar 

  • Litvinov, R.I. and J.W. Weisel, 2017, Role of red blood cells in haemostasis and thrombosis, ISBT Sci. Ser. 12, 176–183.

    Article  CAS  Google Scholar 

  • Lowe, G.D.O., 1986, Blood rheology in arterial disease, Clin. Sci. 71, 137–146.

    Article  CAS  Google Scholar 

  • Matlab Documentation, 2019, corrcoeff, correlation coefficients, 9.7.0.1296695 R2019b, Update 4, The MathWorks, Inc.

  • Mewis, J. and N.J. Wagner, 2009, Thixotropy, Adv. Colloid Interface Sci. 147–148, 214–227.

    Article  CAS  Google Scholar 

  • Mewis, J. and N.J. Wagner, 2012, Colloidal Suspension Rheology, Cambridge University Press, New York, 25–30.

    Google Scholar 

  • Moreno, L., F. Calderas, G. Sanchez-Olivares, L. Medina-Torres, A. Sanchez-Solis, and O. Manero, 2015, Effect of cholesterol and triglycerides levels on the rheological behavior of human blood, Korea-Aust. Rheol. J. 27, 1–10.

    Article  Google Scholar 

  • Mujumdar, A., A.N. Beris, and A.B. Metzner, 2002, Transient phenomena in thixotropic systems, J. Non-Newton. Fluid Mech. 102, 157–178.

    Article  CAS  Google Scholar 

  • Müller, F., N.J. Mutch, W.A. Schenk, S.A. Smith, L. Esterl, H.M. Spronk, S. Schmidbauer, W.A. Gahl, J.H. Morrissey, and T. Renné, 2009, Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo, Cell 139, 1143–1156.

    Article  CAS  Google Scholar 

  • Pirkl, L. and T. Bodnar, 2010, Numerical simulation of blood flow using generalized Oldroyd-B model, Fifth European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, Lisbon, Portugal.

  • Poston, R.N., 2019, Atherosclerosis: Integration of its pathogenesis as a self-perpetuating propagating inflammation: A review, Cardiovasc. Endocrinol. Metab. 8, 51–61.

    Article  CAS  Google Scholar 

  • Puig, J.E., F. Bautista, E. Hernandez, and F. Lopez-Serrano, 2018, Predictions of flow instabilities in the shear-thickening regime with an improved Bautista-Manero-Puig model, AICHE J. 64, 3735–3745.

    Article  CAS  Google Scholar 

  • Reasor, D.A., J.R. Clausen, and C.K. Aidun, 2013, Rheological characterization of cellular blood in shear, J. Fluid Mech. 726, 497–516.

    Article  Google Scholar 

  • Rogers, S.A., 2017, In search of physical meaning: Defining transient parameters for nonlinear viscoelasticity, Rheol. Acta 56, 501–525.

    Article  CAS  Google Scholar 

  • Shibeshi, S. and W. Collins, 2005, The rheology of blood flow in a branched arterial system, Appl. Rheol. 15, 398–405.

    Article  Google Scholar 

  • Smith, S.A. and J.H. Morrissey, 2008a, Polyphosphate enhances fibrin clot structure, Blood 112, 2810–2816.

    Article  CAS  Google Scholar 

  • Smith, S.A. and J.H. Morrissey, 2008b, Polyphosphate as a general procoagulant agent, J. Thromb. Haemost. 6, 1750–1756.

    Article  CAS  Google Scholar 

  • Sousa, P.C., J. Carneiro, R. Vaz, A. Cerejo, F.T. Pinho, M.A. Alves, and M.S.N. Oliveira, 2013, Shear viscosity and nonlinear behavior of whole blood under large amplitude oscillatory shear, Biorheology 50, 269–282.

    Article  CAS  Google Scholar 

  • Taylor, R., 1990, Interpretation of the correlation coefficient: A basic review, J. Diagn. Med. Sonogr. 6, 35–39.

    Article  Google Scholar 

  • Tomaiuolo, G., A. Garciati, S. Caserta, and S. Guido, 2016, Blood linear viscoelasticity by small amplitude oscillatory flow, Rheol. Acta 55, 485–495.

    Article  CAS  Google Scholar 

  • Windberger, U., A. Bartholovitsch, R. Plasenzotti, K.J. Korak, and G. Heinze, 2003, Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: Reference values and comparison of data, Exp. Physiol. 88, 431–440.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Armstrong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, M., Baker, J., Trump, J. et al. Structure-rheology elucidation of human blood via SPP framework and TEVP modeling. Korea-Aust. Rheol. J. 33, 45–63 (2021). https://doi.org/10.1007/s13367-021-0005-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-021-0005-1

Keywords

Navigation