Skip to main content
Log in

Calculation of molecular weight distribution using extended Cole-Cole model and quadratic mixing rule

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

We suggest a numerical method to calculate molecular weight distribution from linear viscoelastic data. The calculation method consists of three components: (1) a viscoelastic model of a monodisperse polymer as a function of molecular weight; (2) the mixing rule connecting viscoelastic data of monodisperse and polydisperse polymers through molecular weight distribution; (3) an algorithm which calculates the molecular weight distribution from the chosen mixing rule. Since we cannot measure the relaxation modulus of all monodisperse samples, we need an accurate monodisperse model for any molecular weight. It is known that a dynamic test is more reliable than a relaxation test, while the mixing rule needs relaxation modulus. Hence, we should have a smart numerical method that can convert dynamic data to relaxation modulus with the minimum conversion error. If we use the numerical method, then we have to generate numerical data from the model. Then it takes quite a long time. On the other hand, if we have a monodisperse model with the analytical relaxation spectrum, then calculation time can be reduced dramatically. Since the conversion from relaxation modulus to dynamic modulus suffers from smaller errors than the reverse conversion because of ill-posedness of the interconversion, the analytical conversion can be implemented more quickly at an acceptable level of errors. This paper proposes a new method satisfying the requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts, E. and J. Korst, 1989, Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing, Wiley.

  • Anderssen, R.S. and D.W. Mead, 1998, Theoretical derivation of molecular weight scaling for rheological parameters, J. Non-Newton. Fluid Mech. 76, 299–306.

    Article  CAS  Google Scholar 

  • Bae, J.E., and K.S. Cho, 2015, Logarithmic method for continuous relaxation spectrum and comparison with previous methods, J. Rheol. 59, 1081–1112.

    Article  CAS  Google Scholar 

  • Carrot, C. and J. Guillet, 1997, From dynamic moduli to molecular weight distribution: A study of various polydisperse linear polymers, J. Rheol. 41, 1203–1220.

    Article  CAS  Google Scholar 

  • Cho, K.S., K.H. Ahn, S.J. Lee, 2004, Simple method for determining the critical molecular weight from the loss modulus, J. Polym. Sci.: Polym. Phys. 42, 2724–2729.

    Article  CAS  Google Scholar 

  • Cho, K.S., and G.W. Park, 2013, Fixed-point iteration for relaxation spectrum from dynamic mechanical data, J. Rheol. 57, 647–678.

    Article  CAS  Google Scholar 

  • Cho, K.S., M.K. Kwon, J. Lee, and S. Kim, 2017, Mathematical analysis on linear viscoelastic identification, Korea-Aust. Rheol. J. 29, 249–268.

    Article  Google Scholar 

  • Davies, A.R. and R.S. Anderssen, 1997, Sampling localization in determining the relaxation spectrum, J. Non-Newton. Fluid Mech. 73, 163–179.

    Article  CAS  Google Scholar 

  • Des Cloizeaux, J., 1988, Double reptation vs simple reptation in polymer melts, Europhys. Lett. 5, 437–442.

    Article  CAS  Google Scholar 

  • Doi, M. and S.F. Edwards, 1986, The Theory of Polymer Dynamics, Oxford University Press, New York.

    Google Scholar 

  • Ferry, J.D., 1980, Viscoelastic properties of polymers, John Wiley & Sons

    Google Scholar 

  • Friedrich, C., R.J. Loy, and R.S. Anderssen, 2009, Relaxation time spectrum molecular weight distribution relationships, Rheol. Acta 48, 151–162.

    Article  CAS  Google Scholar 

  • Fuchs, K., Chr. Friedrich, and J. Weese, 1996, Viscoelastic properties of narrow-distribution poly(methyl methacrylates), Macromolecules 29, 5893–5901.

    Article  CAS  Google Scholar 

  • Fuoss R.M., J.G. Kirkwood, 1941, Electrical properties of solids, J. Am. Chem. Soc. 63, 385–394.

    Article  CAS  Google Scholar 

  • Guzman, J.D., J.D. Schieber, and R. Pollard, 2005, A regularization-free method for the calculation of molecular weight distributions from dynamic moduli data, Rheol. Acta 44, 342–351.

    Article  CAS  Google Scholar 

  • Honerkamp, J., and J. Weese, 1989, Determination of the relaxation spectrum by a regularization method, Macromolecules 22, 4372–4377.

    Article  CAS  Google Scholar 

  • Honerkamp, J., and J. Weese, 1993, A nonlinear regularization method for the calculation of relaxation spectra, Rheol. Acta 32, 65–73.

    Article  CAS  Google Scholar 

  • Jeon, H.C., 2010, Effect of polydispersity on the viscoelasticity of model homo-polystyrene melts, MS Thesis, Kyungpook National University, Korea.

    Google Scholar 

  • Kim, S, J. Lee, S. Kim, and K.S. Cho, 2018, Application of Monte Carlo method to nonlinear regression of theological data, Korea-Aust. Rheol. J. 30, 21–28.

    Article  Google Scholar 

  • Kwon, M.K., J. Lee, K.S. Cho, S.J. Lee, H.C. Kim, S.W. Jeong, and S.G. Lee, 2019, Scaling analysis on the linear viscoleasticity of Cellulose 1-ethyl-3-methyl Imidazolium Acetate solutions, Korea-Aust. Rheol. J. 31, 123–139.

    Article  Google Scholar 

  • Lang, C., 2017, A Laplace transform method for molecular mass distribution calculation from rheometric data, J. Rheol. 61, 947–954.

    Article  CAS  Google Scholar 

  • Léonardi, F., A. Allal, and G. Marin, 2002, Molecular weight distribution from viscoelastic data: The importance of tube renewal and Rouse modes, J. Rheol. 46, 209–224.

    Article  CAS  Google Scholar 

  • Maier, D., A. Eckstein, Cr. Friedrich, and J. Honerkamp, 1998, Evaluation of models combining rheological data with the molecular weight distribution, J. Rheol. 42, 1153–1173.

    Article  CAS  Google Scholar 

  • Marin, G., and W.W. Graessley, 1977, Viscoelastic properties of high molecular weight polymers in the molten state, Rheol. Acta 16, 527–533.

    Article  CAS  Google Scholar 

  • McGrory, W.J. and W.H. Tuminello, 1990, Determining the molecular weight distribution from the stress relaxation properties of a melt, J. Rheol. 34, 867–890.

    Article  Google Scholar 

  • Mead, D.W., 1994, Determination of molecular weight distribution of linear flexible polymers from linear viscoelastic material functions, J. Rheol. 38, 1797–1827.

    Article  CAS  Google Scholar 

  • Montfort, J.P., G. Marin, and Ph. Monge, 1986, Molecular weight distribution dependence of the viscoelastic properties of linear polymers: the coupling of reptation and tube-renewal effects, Macromolecules 19, 1979–1988.

    Article  CAS  Google Scholar 

  • Nobile, M.R. and F. Cocchini, 2008, A generalized relation between mwd and relaxation time spectrum, Rheol. Acta 47, 509–519.

    Article  CAS  Google Scholar 

  • Park, J.W., J. Yoon, J. Cha, and H.S. Lee, 2015, Determination of molecular weight distribution and composition dependence of monomeric friction factors from the stress relaxation of ultrahigh molecular weight polyethylene gels, J. Rheol. 59, 1173–1189.

    Article  CAS  Google Scholar 

  • Pattamaprom, C., R.G. Larson, and A. Sirivat, 2008, Determining polymer molecular weight distributions from rheological properties using the dual-constraint model, Rheol. Acta 47, 689–700.

    Article  CAS  Google Scholar 

  • Rubinstein, M. and R.H. Colby, 2003, Polymer Physics, Oxford University Press, New York.

    Google Scholar 

  • Schausberger, A., G. Schindlauer, and H. Janeschitz-Kriegl, 1985, Linear elastico-viscous properties of molten standard polystyrene, Rheol. Acta 24, 220–227.

    Article  CAS  Google Scholar 

  • Shanbhag, S., 2019, pyReSpect: A computer program to extract discrete and continuous spectra from stress relaxation experiments, Macromol. Theor. Simul. 3, 1900005.

    Article  CAS  Google Scholar 

  • Stadler, F.J., and C. Bailly, 2009, A new method for the calculation of continuous relaxation spectra from dynamic mechanical data, Rheol. Acta 48, 33–49.

    Article  CAS  Google Scholar 

  • Takeh, A., and S. Shanbhag, 2013, A computer program to extract the continuous and discrete relaxation spectra from dynamic viscoelastic measurements, Appl. Rheol. 23, 1–10.

    Google Scholar 

  • Thimm, W., C. Friedrich, M. Marth, and J. Honerkamp, 1999, An analytical relation between relaxation time spectrum and molecular weight distribution, J. Rheol. 43, 1663–1672.

    Article  CAS  Google Scholar 

  • Thimm, W., C. Friedrich, M. Marth, and J. Honerkamp, 2000, On the Rouse spectrum and the determination of the molecular weight distribution from rheological data, J. Rheol. 44, 429–438.

    Article  CAS  Google Scholar 

  • Tsenoglou, C., 1987, Viscoelasticity of Binary Homopolymer Blends, ACS Polym. Prepr. 28, 185–186.

    CAS  Google Scholar 

  • Tuminello, W.H., 1986, Molecular weight and molecular weight distribution from dynamic measurements of polymer melts, Polymer Engineering and Science 26, 1339–1347.

    Article  CAS  Google Scholar 

  • Van Ruymbeke, E., R. Keunings, and C. Bailly, 2002, Determination of the molecular weight distribution of entangled linear polymers from linear viscoelasticity data, J. Non-Newtonian Fluid Mech. 105, 153–175.

    Article  CAS  Google Scholar 

  • Vega, J.F., S. Rastogi, G. W.M. Peters, and H.E.H. Meijer, 2004, Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt, J. Rheol. 48, 663–678.

    Article  CAS  Google Scholar 

  • Wasserman, S.H. and W.W. Graessley, 1992, Effects of polydispersity on linear viscoelasticity in entangled polymer melts, J. Rheol. 36, 543–572.

    Article  CAS  Google Scholar 

  • Wasserman, S.H., 1995, Calculating the molecular weight distribution from linear viscoelastic response of polymer melts, J. Rheol. 39, 601–625.

    Article  CAS  Google Scholar 

  • Watanabe, H., 1999, Viscoelasticity and dynamics of entangled polymers, Prog. Polym. Sci. 24, 1253–1403.

    Article  CAS  Google Scholar 

  • Wu, S., 1985, Polymer molecular-weight distribution from dynamic melts viscosity, Polym. Eng. and Sci. 25, 122–128.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Mid-Career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2017R1A2B1005506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Soo Cho.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Kim, S. & Cho, K.S. Calculation of molecular weight distribution using extended Cole-Cole model and quadratic mixing rule. Korea-Aust. Rheol. J. 33, 65–78 (2021). https://doi.org/10.1007/s13367-021-0006-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-021-0006-0

Keywords

Navigation