Skip to main content
Log in

Modified Legendre–Gauss–Radau Collocation Method for Optimal Control Problems with Nonsmooth Solutions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A new method is developed for solving optimal control problems whose solutions are nonsmooth. The method developed in this paper employs a modified form of the Legendre–Gauss–Radau orthogonal direct collocation method. This modified Legendre–Gauss–Radau method adds two variables and two constraints at the end of a mesh interval when compared with a previously developed standard Legendre–Gauss–Radau collocation method. The two additional variables are the time at the interface between two mesh intervals and the control at the end of each mesh interval. The two additional constraints are a collocation condition for those differential equations that depend upon the control and an inequality constraint on the control at the endpoint of each mesh interval. The additional constraints modify the search space of the nonlinear programming problem such that an accurate approximation to the location of the nonsmoothness is obtained. The transformed adjoint system of the modified Legendre–Gauss–Radau method is then developed. Using this transformed adjoint system, a method is developed to transform the Lagrange multipliers of the nonlinear programming problem to the costate of the optimal control problem. Furthermore, it is shown that the costate estimate satisfies one of the Weierstrass–Erdmann optimality conditions. Finally, the method developed in this paper is demonstrated on an example whose solution is nonsmooth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM Press, Philadelphia (2010)

    Book  MATH  Google Scholar 

  2. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide optimization. Comput. Chem. Eng. 33(3), 575–582 (2008)

    Article  Google Scholar 

  4. Jain, D., Tsiotras, P.: Trajectory optimization using multiresolution techniques. J. Guid. Control Dyn. 31(5), 1424–1436 (2008)

    Article  Google Scholar 

  5. Zhao, Y., Tsiotras, P.: Density functions for mesh refinement in numerical optimal control. J. Guid. Control Dyn. 34(1), 271–277 (2011)

    Article  Google Scholar 

  6. Elnagar, G., Kazemi, M.A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40(10), 1793–1796 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elnagar, G.N., Razzaghi, M.: Short communication: a collocation type method for linear quadratic optimal control problems. Optim. Control Appl. Methods 18(3), 227–235 (1997)

    Article  MATH  Google Scholar 

  8. Fahroo, F., Ross, I.M.: Costate estimation by a Legendre pseudospectral method. J. Guid. Control Dyn. 24(2), 270–277 (2001)

    Article  Google Scholar 

  9. Darby, C.L., Hager, W.W., Rao, A.V.: An \(hp\)-adaptive pseudospectral method for solving optimal control problems. Optim. Control Appl. Methods 32(4), 476–502 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Darby, C.L., Hager, W.W., Rao, A.V.: Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J. Spacecr. Rockets 48(3), 433–445 (2011)

    Article  Google Scholar 

  11. Patterson, M.A., Hager, W.W., Rao, A.V.: A \(ph\) mesh refinement method for optimal control. Optim. Control Appl. Methods 36(4), 398–421 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, F., Hager, W.W., Rao, A.V.: Adaptive mesh refinement for optimal control using nonsmoothness detection and mesh size reduction. J. Frankl. Inst. 352(10), 4081–4106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, F., Hager, W.W., Rao, A.V.: Adaptive mesh refinement method for optimal control using decay rates of Legendre polynomial coefficients. IEEE Trans. Control Syst. Technol. 26(4), 1475–1483 (2018)

    Article  Google Scholar 

  14. Canuto, C., Hussaini, M.Y., Quarteroni, A.M., Thomas Jr., A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)

    MATH  Google Scholar 

  15. Fornberg, B.: A Practical Guide to Pseudospectral Methods, vol. 1. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  16. Trefethen, L.N.: Spectral Methods in MATLAB, vol. 10. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  17. Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., Rao, A.V.: Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control Dyn. 29(6), 1435–1440 (2006)

    Article  Google Scholar 

  18. Rao, A.V., Benson, D.A., Darby, C., Patterson, M.A., Francolin, C., Sanders, I., Huntington, G.T.: Algorithm 902: Gpops, a matlab software for solving multiple-phase optimal control problems using the Gauss pseudospectral method. ACM Trans. Math. Softw. 37(2), 22 (2010)

    Article  MATH  Google Scholar 

  19. Kameswaran, S., Biegler, L.T.: Convergence rates for direct transcription of optimal control problems using collocation at Radau points. Comput. Optim. Appl. 41(1), 81–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garg, D., Patterson, M.A., Darby, C.L., Francolin, C., Huntington, G.T., Hager, W.W., Rao, A.V.: Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems via a Radau pseudospectral method. Comput. Optim. Appl. 49(2), 335–358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Garg, D., Hager, W.W., Rao, A.V.: Pseudospectral methods for solving infinite-horizon optimal control problems. Automatica 47(4), 829–837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garg, D., Patterson, M.A., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11), 1843–1851 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hager, W.W., Hou, H., Rao, A.V.: Convergence rate for a Radau collocation method applied to unconstrained optimal control (2015). arXiv:1508.03783

  24. Hager, W.W., Hou, H., Rao, A.V.: Convergence rate for a Gauss collocation method applied to unconstrained optimal control. J. Optim. Theory Appl. 169(3), 801–824 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hager, W.W., Hou, H., Rao, A.V.: Lebesgue constants arising in a class of collocation methods. IMA J. Numer. Anal. 37(4), 1884–1901 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Hager, W.W., Liu, J., Mohapatra, S., Rao, A.V., Wang, X.-S.: Convergence rate for a Gauss collocation method applied to constrained optimal control. SIAM J. Control Optim. 56, 1386–1411 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hager, W.W., Hou, H., Mohapatra, S., Rao, A.V., Wang, X.-S.: Convergence rate for a Radau hp-collocation method applied to constrained optimal control. Comput. Optim. Appl. 74, 274–314 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Chen, W., Du, W., Hager, W.W., Yang, L.: Bounds for integration matrices that arise in Gauss and Radau collocation. Comput. Optim. Appl. 74(1), 259–273 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bryson, A.E., Ho, Y.: Applied Optimal Control: Optimization, Estimation, and Control. Hemisphere Publishing Corporation, Washington (1975)

    Google Scholar 

  30. Darby, C.L.: HP-Pseudospectral Method for Solving Continuous-Time Nonlinear Optimal Control Problems. Ph.D. thesis, University of Florida (2011)

  31. Guerra, M., Sarychev, A.: Measuring singularity of generalized minimizers for control-affine problems. J. Dyn. Control Syst. 15(2), 177–221 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, S., Zhao, R., Zhang, Q.: Optimization method for solving bang–bang and singular control problems. J. Control Theory Appl. 10(4), 559–564 (2012)

    Article  MathSciNet  Google Scholar 

  33. Martinon, P., Bonnans, F., Laurent-Varin, J., Trélat, E.: Numerical study of optimal trajectories with singular arcs for an Ariane 5 launcher. J. Guid. Control Dyn. 32(1), 51–55 (2009)

    Article  Google Scholar 

  34. Cuthrell, J.E., Biegler, L.T.: On the optimization of differential-algebraic process systems. AIChE J. 33(8), 1257–1270 (1987)

    Article  MathSciNet  Google Scholar 

  35. Cuthrell, J.E., Biegler, L.T.: Simultaneous optimization and solution methods for batch reactor control profiles. Comput. Chem. Eng. 13(1–2), 49–62 (1989)

    Article  Google Scholar 

  36. Chen, W., Shao, Z., Biegler, L.T.: A bilevel NLP sensitivitybased decomposition for dynamic optimization with moving finite elements. AIChE J. 60(3), 966–979 (2014)

    Article  Google Scholar 

  37. Chen, W., Biegler, L.T.: Nested direct transcription optimization for singular optimal control problems. AIChE J. 62(10), 3611–3627 (2016)

    Article  Google Scholar 

  38. Chen, W., Ren, Y., Zhang, G., Biegler, L.T.: A simultaneous approach for singular optimal control based on partial moving grid. AIChE J. 65(6), e16584 (2019)

    Article  Google Scholar 

  39. Ross, I.M., Fahroo, F.: Pseudospectral knotting methods for solving nonsmooth optimal control problems. J. Guid. Control Dyn. 27(3), 397–405 (2004)

    Article  Google Scholar 

  40. Lavrentiev, M.: Sur quelques problemes du calcul des variations. Ann. Mat. Pura Appl. 4, 7–28 (1927)

    Article  MathSciNet  Google Scholar 

  41. Ball, J.M., Knowles, G.: A numerical method for detecting singular minimizers. Numer. Math. 51(2), 181–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Eide, J. , Rao, A.V.: Lavrentiev phenomenon in hp Gaussian quadrature collocation methods for optimal control. In: 2016 AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2016–5575, Long Beach, California, 13–16 Sept (2016)

  43. Eide, J.D., Hager, W.W., Rao, A.V.: Modified radau collocation method for solving optimal control problems with nonsmooth solutions. Part I: Lavrentiev Phenomenon and the Search Space. In: 2018 IEEE Conference on Decision and Control (CDC), 17–19 Dec (2018), pp. 1644–1650

  44. Eide, J.D., Hager, W.W., Rao, A.V.: Modified Radau collocation method for solving optimal control problems with nonsmooth solutions. Part II: costate estimation and the transformed adjoint system. In: 2018 IEEE Conference on Decision and Control (CDC), 17–19 Dec (2018), pp. 1651–1656

  45. Manià, B.: Soppa un esempio di Lavrentieff. Boll. Unione Mat. Ital. 13, 147–153 (1934)

    MATH  Google Scholar 

  46. Hager, W.W.: Runge–Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1965)

    MATH  Google Scholar 

  48. Ferriero, A.: The Lavrentiev phenomenon in the calculus of variations. Ph.d. thesis, Universita degli Studi di Milano-Bicocca (2004)

Download references

Acknowledgements

The authors gratefully acknowledge support for this research from the U.S. Office of Naval Research under Grants N00014-15-1-2048 and N00014-19-1-2543, and from the U.S. National Science Foundation under Grants CBET-1404767, DMS-1522629, DMS-1819002, CMMI-1563225, and CMMI-2031213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil V. Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eide, J.D., Hager, W.W. & Rao, A.V. Modified Legendre–Gauss–Radau Collocation Method for Optimal Control Problems with Nonsmooth Solutions. J Optim Theory Appl 191, 600–633 (2021). https://doi.org/10.1007/s10957-021-01810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01810-5

Keywords

Navigation