Skip to main content
Log in

Theoretical study on performance comparison of various solar collectors using binary nanofluids

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The performances of three types of solar collectors using various nanofluids are theoretically investigated; further, by varying the concentration of binary nanofluids comprising of two highly efficient nanofluids, the performances of the solar collectors are analytically examined. The results obtained demonstrate that MWCNT, CuO, and Fe3O4 nanofluids show a higher efficiency compared with other nanofluids. Both MWCNT/CuO and MWCNT/Fe3O4 binary nanofluids provide efficiency enhancements in the range 2–50 %, 3–7 %, and 2–4 %, respectively, in flat plate, vacuum U-tube, and heat pipe solar collectors, compared with a 0.05 vol% MWCNT nanofluid. The use of binary nanofluids enhances the efficiency of solar collectors, which further increases with the concentration of the binary nanofluids. Furthermore, when the MWCNT/CuO binary nanofluid shows a higher efficiency than the MWCNT/Fe3O4 binary nanofluid in three solar collectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A :

Area (m2)

C :

Conductance (W/m·K)

Cp :

Specific heat capacity (J/kg·K)

D :

Diameter (m)

F :

Efficiency factor

F’:

Solar collector efficiency factor

f :

Friction factor

FR :

Collector heat removal factor

FPSC :

Flat plate solar collector

HPSC :

Heat pipe solar collector

G :

Solar radiation (W/m2)

h :

Heat transfer coefficient (W/m2·K)

k :

Thermal conductivity (W/m·K)

L :

Length (m)

m :

Mass flow rate (kg/s)

Nc :

Number of glass cover

Qu :

Useful heat (W)

T :

Temperature (K)

U :

Overall heat transfer coefficient (W/m2·K)

VUSC :

Vacuum U-tube solar collector

W :

Tube spacing (m)

H :

Efficiency

ε :

Emissivity

φ :

Volume concentration of nanoparticles

ρ :

Density

τα :

Absorptance-transmittance product

δ:

Absorber plate thickness (m)

σ :

Stefan Boltman constant (W/m2·k4)

a :

Ambient

bf :

Base fluid

c :

Absorber coating

i :

Inlet

is :

Inlet surface

np :

Nanoparticle

nf :

Nanofluid

o :

Outlet

os :

Outlet surface

p :

Plate

t :

Tube

w :

Wind

References

  1. H. U. Helvaci and Z. A. Khan, Mathematical modelling and simulation of multiphase flow in a flat plate solar energy collector, Energy Conversion and Management, 106 (2015) 139–150.

    Article  Google Scholar 

  2. B. K. Naik, A. Varshney, P. Muthukumar and C. Somayaji, Modelling and performance analysis of u type evacuated tube solar collector using different working fluids, Energy Procedia, 90 (2016) 227–237.

    Article  Google Scholar 

  3. S. S. Kumar, K. M. Kumar and S. R. S. Kumar, Design of evacuated tube solar collector with heat pipe, Materials Today: Proceedings, 4 (2017) 12641–12646.

    Google Scholar 

  4. D. Zhang, H. Tao, M. Wang, Z. Sun and C. Jiang, Numerical simulation investigation on thermal performance of heat pipe flat-plate solar collector, Applied Thermal Engineering, 118 (2017) 113–126.

    Article  Google Scholar 

  5. E. Kaloudis, E. Papanicolaou and V. Belessiotis, Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model, Renewable Energy, 97 (2016) 218–229.

    Article  Google Scholar 

  6. S. Müller, F. Giovannetti, R. Reineke-Koch, O. Kastner and B. Hafner, Simulation study on the efficiency of thermochromic absorber coatings for solar thermal flat-plate collectors, Solar Energy, 188 (2019) 865–874.

    Article  Google Scholar 

  7. M. Mercan and A. Yurddaş, Numerical analysis of evacuated tube solar collectors using nanofluids, Solar Energy, 191 (2019) 167–179.

    Article  Google Scholar 

  8. B. K. Naik, A. Varshney, P. Muthukumar and C. Somayaji, Modelling and performance analysis of U type evacuated tube solar collector using different working fluids, Energy Procedia, 90 (2016) 227–237.

    Article  Google Scholar 

  9. T. Yousefi, F. Veysi, E. Shojaeizadeh and S. Zinadini, An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors, Renewable Energy, 39 (2012) 293–298.

    Article  Google Scholar 

  10. T. Sokhansefat, A. Kasaeian, K. Rahmani, A. H. Heidari, F. Aghakhani and O. Mahian, Thermoeconomic and environmental analysis of solar flat plate and evacuated tube collectors in cold climatic conditions, Renewable Energy, 115 (2018) 501–508.

    Article  Google Scholar 

  11. A. K. Hussein, D. Li, L. Kolsi, S. Kata and B. Sahoo, A review of nano fluid role to improve the performance of the heat pipe solar collectors, Energy Procedia, 109 (2017) 417–424.

    Article  Google Scholar 

  12. M. S. Dehaj and M. Z. Mohiabadi, Experimental investigation of heat pipe solar collector using MgO nanofluids, Solar Energy Materials and Solar Cells, 191 (2019) 91–99.

    Article  Google Scholar 

  13. N. Jayanthi, R. S. Kumar, G. Karunakaran and M. Venkatesh, Experimental investigation on the thermal performance of heat pipe solar collector (HPSC), Materials Today: Proceedings (2019).

  14. F. S. Javadi, R. Saidur and M. Kamalisarvestani, Investigating performance improvement of solar collectors by using nanofluids, Renewable and Sustainable Energy Reviews, 28 (2013) 232–245.

    Article  Google Scholar 

  15. M. B. Kim, H. G. Park and C. Y. Park, Change of thermal conductivity and cooling performance for water based Al2O3-surfactant nanofluid with time lapse, International Journal of Air-Conditioning and Refrigeration, 26 (2018) 1850009.

    Article  Google Scholar 

  16. A. J. Moghadam, M. Farzane-Gord, M. Sajadi and M. Hoseyn-Zadeh, Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector, Experimental Thermal and Fluid Science, 58 (2014) 9–14.

    Article  Google Scholar 

  17. I. M. Mahbubul, M. M. A. Khan, N. I. Ibrahim, H. M. Ali, F. A. Al-Sulaiman and R. Saidur, Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector, Renewable Energy, 121 (2018) 36–44.

    Article  Google Scholar 

  18. G. A. Pise, S. S. Salve, A. T. Pise and A. A. Pise, Investigation of solar heat pipe collector using nanofluid and surfactant, Energy Procedia, 90 (2016) 481–491.

    Article  Google Scholar 

  19. M. E. Zayed, J. Zhao, Y. Du, A. E. Kabeel and S. M. Shalaby, Factors affecting the thermal performance of the flat plate solar collector using nanofluids: a review, Solar Energy, 182 (2019) 382–396.

    Article  Google Scholar 

  20. K. Farhana, K. Kadirgama, M. M. Rahman, D. Ramasamy, M. M. Noor, G. Najafi, M. Samykano and A. S. F. Mahamude, Improvement in the performance of solar collectors with nanofluids-a state of the art review, Nano-Structures and Nano-Objects, 18 (2019) 100276.

    Article  Google Scholar 

  21. G. M. Moldoveanu, G. Huminic, A. A. Minea and A. Huminic, Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid, International Journal of Heat and Mass Transfer, 127 (2018) 450–457.

    Article  Google Scholar 

  22. S. A. M. Mehryan, F. M. Kashkooli, M. Ghalambaz and A. J. Chamkha, Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity, Advanced Powder Technology, 28 (2017) 2295–2305.

    Article  Google Scholar 

  23. A. A. Minea and W. M. El-Maghlany, Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison, Renewable Energy, 120 (2018) 350–364.

    Article  Google Scholar 

  24. T. R. Shah and H. M. Ali, Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review, Solar Energy, 183 (2019) 173–203.

    Article  Google Scholar 

  25. F. R. Siddiqui, C. Y. Tso, K. C. Chan, S. C. Fu and C. Y. H. Chao, On trade-off for dispersion stability and thermal transport of Cu-Al2O3 hybrid nanofluid for various mixing ratios, International Journal of Heat and Mass Transfer, 132 (2019) 1200–1216.

    Article  Google Scholar 

  26. S. K. Verma, A. K. Tiwari, S. Tiwari and D. S. Chauhan, Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid, Solar Energy, 167 (2018) 231–241.

    Article  Google Scholar 

  27. S. A. Klein, Calculation of flat-plate collector loss coefficients, Solar Energy, 17 (1974) 69–71.

    Google Scholar 

  28. M. B. Eberlein, Analysis and Performance Predictions of Evacuated Tubular Solar Collectors Using Air as the Working Fluid, University of Wisconsin (1976).

  29. L. S. Sundar and K. V. Sharma, Thermal conductivity enhancement of nanoparticles in distilled water, Int. J. Nanoparticles, 1 (2008) 12.

    Article  Google Scholar 

  30. B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, 11 (1998) 151–170.

    Article  Google Scholar 

  31. W. Kang, Y. Shin and H. Cho, Experimental investigation on the heat transfer performance of evacuated tube solar collector using CuO nanofluid and water, Journal of Mechanical Science and Technology, 33 (2019) 1477–1485.

    Article  Google Scholar 

  32. H. Kim, J. Kim and H. Cho, Experimental study on performance improvement of U-tube solar collector depending on nanoparticle size and concentration of Al2O3 nanofluid, Energy, 118 (2017) 1304–1312.

    Article  Google Scholar 

  33. B. Du, E. Hu and M. Kolhe, An experimental platform for heat pipe solar collector testing, Renewable and Sustainable Energy Reviews, 17 (2013) 119–125.

    Article  Google Scholar 

  34. M. N. A. W. M. Yazid, N. A. C. Sidik, R. Mamat and G. Najafi, A review of the impact of preparation on stability of carbon nanotube nanofluids, International Communications in Heat and Mass Transfer, 78 (2016) 253–263.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1A2C2008248) and Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20194030202410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghyun Cho.

Additional information

Recommended by Editor Yong Tae Kang

Minjung Lee is a Ph.D. course of Mechanical Engineering, Chosun University. She received M.D. from Chosun University in 2020. Her interest includes heat and mass transfer in the solar collector, application of bio-signals in the thermal system, etc.

Yunchan Shin is a Ph.D. candidate of Mechanical Engineering, Chosun University. His interest includes the performance improvement of solar collector, thermal comfort in automobile air-conditioning system, and the performance improvement in the HVAC system et al.

Honghyun Cho is a Professor of Mechanical Engineering, Chosun University. He received Ph.D. from Korea University in 2005. His interest includes the heat pump system with renewable energy, alternative refrigerant HVAC system, heat and mass transfer in the heat exchanger, pool boiling using nanofluids, etc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Shin, Y. & Cho, H. Theoretical study on performance comparison of various solar collectors using binary nanofluids. J Mech Sci Technol 35, 1267–1278 (2021). https://doi.org/10.1007/s12206-021-0238-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-0238-4

Keywords

Navigation