Skip to main content
Log in

Numerical study on failure behavior of open-hole composite laminates based on LaRC criterion and extended finite element method

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

A new numerical model combining LaRC failure criterion and extended finite element method (XFEM) is created to describe the failure behavior in fiber-reinforced polymer (FRP) composites. In this model, the onset of intralaminar damages are predicted based on the LaRC failure criterion, and the crack propagation and stiffness degradation are described explicitly by the XFEM. The user subroutine UDMGINI of ABAQUS defines the initial damage criterion and a mixed-mode, energy-based fracture criterion is employed to describe the crack onset and propagation in the enriched region of XFEM. The proposed model is used to investigate the failure behavior of two sets of open-hole laminates under tension. It is demonstrated that the proposed numerical method can predict the experimental data well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Hart-Smith, Predictions of the original and truncated maximum-strain failure models for certain fibrous composite laminates, Composites Science and Technology, 58(7) (1998) 1151–1178.

    Article  Google Scholar 

  2. T. A. Bogetti, C. P. R. Hoppel, V. M. Harik, J. F. Newill and B. P. Burns, Predicting the nonlinear response and progressive failure of composite laminates, Composites Science and Technology, 64(3) (2004) 329–342.

    Article  Google Scholar 

  3. R. M. Christensen, Stress based yield/failure criteria for fiber composites, International Journal of Solids and Structures, 34(5) (1997) 529–543.

    Article  MATH  Google Scholar 

  4. P. A. Zinoviev, S. V. Grigoriev, O. V. Lebedeva and L. P. Tairova, The strength of multilayered composites under a plane-stress state, Composites Science and Technology, 58(7) (1998) 1209–1223.

    Article  Google Scholar 

  5. O. Hoffman, The brittle strength of orthotropic materials, Journal of Composite Materials, 1(2) (1967) 200–206.

    Article  Google Scholar 

  6. C. B. Norris, Strength of Orthotropic Materials Subjected to Combined Stresses, Report United States Forest Products Laboratory (1962).

  7. T. E. Tay, G. Liu, X. S. Sun, M. Ridha, V. B. C. Tan, D. C. Pham and H. T. Pham, Progressive failure analysis of composites, Journal of Composite Materials, 42(18) (2008) 1921–1966.

    Article  Google Scholar 

  8. F. K. Chang and K. Y. Chang, A progressive damage model for laminated composites, Journal of Composite Materials, 21(9) (1987) 834–855.

    Article  Google Scholar 

  9. S. W. Tsai and E. M. Wu, A general theory of strength for anisotropic materials, Journal of Composite Materials, 5(1) (1971) 58–80.

    Article  Google Scholar 

  10. Z. Hashin and A. Rotem, A fatigue failure criterion for fiber reinforced materials, Journal of Composite Materials, 7(4) (1973) 448–464.

    Article  Google Scholar 

  11. Z. Hashin, Failure criteria for unidirectional fiber composites, Journal of Applied Mechanics, 47(2) (1980) 329–334.

    Article  Google Scholar 

  12. C. T. Sun, B. J. Quinn and J. Tao, Comparative evaluation of failure analysis methods for composite laminates, Laminates (1996).

  13. K.-S. Liu and S. W. Tsai, A progressive quadratic failure criterion for a laminate, Composites Science and Technology, 58(7) (1998) 1023–1032.

    Article  Google Scholar 

  14. J. P. Hou, N. Petrinic, C. Ruiz and S. R. Hallett, Prediction of impact damage in composite plates, Composites Science and Technology, 60(2) (2000) 273–281.

    Article  Google Scholar 

  15. J. P. Hou, N. Petrinic and C. Ruiz, A delamination criterion for laminated composites under low-velocity impact, Composites Science and Technology, 61(14) (2001) 2069–2074.

    Article  Google Scholar 

  16. A. S. Kaddour, M. J. Hinton and P. D. Soden, A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions, Composites Science & Technology, 64(3) (2002) 449–476.

    Google Scholar 

  17. M. J. Hinton, A. S. Kaddour and P. D. Soden, A further assessment of the predictive capabilities of current failure theories for composite laminates: comparison with experimental evidence, Composites Science and Technology, 64(3) (2004) 549–588.

    Article  Google Scholar 

  18. M. Hinton and A. Kaddour, The background to the second world-wide failure exercise, Journal of Composite Materials, 46(19–20) (2012) 2283–2294.

    Article  Google Scholar 

  19. A. Kaddour, M. Hinton, P. Smith and S. Li, The background to the third world-wide failure exercise, Journal of Composite Materials, 47(20–21) (2013) 2417–2426.

    Article  Google Scholar 

  20. A. Puck and H. Schürmann, Failure analysis of FRP laminates by means of physically based phenomenological models, Composites Science and Technology, 58(7) (1998) 1045–1067.

    Article  Google Scholar 

  21. C. G. Davila and P. P. Camanho, Failure Criteria for FRP Laminates in Plane Stress, NASA TM 212663 (2003) 613.

  22. S. Pinho et al., Failure Models and Criteria for FRP Under Inplane or Three-dimensional Stress States Including Shear Non-linearity, Nasa Technical Memorandum 213530 (2005) 18.

  23. S. T. Pinho, R. Darvizeh, P. Robinson, C. Schuecker and P. P. Camanho, Material and structural response of polymer-matrix fibre-reinforced composites, Journal of Composite Materials, 47(6–7) (2013) 679–696.

    Article  Google Scholar 

  24. P. P. Camanho, C. G. Davila, S. T. Pinho, L. Iannucci and P. Robinson, Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear, Composites Part A: Applied Science and Manufacturing, 37(2) (2006) 165–176.

    Article  Google Scholar 

  25. P. Maimí, P. P. Camanho, J. A. Mayugo and C. G. Dávila, A continuum damage model for composite laminates: Part I — Constitutive model, Mechanics of Materials, 39 (2007) 897–908.

    Article  Google Scholar 

  26. I. Lapczyk and J. A. Hurtado, Progressive damage modeling in fiber-reinforced materials, Composites Part A, 38(11) (2007) 2333–2341.

    Article  Google Scholar 

  27. M. V. Donadon, L. Iannucci, B. G. Falzon, J. M. Hodgkinson and S. F. M. D. Almeida, A progressive failure model for composite laminates subjected to low velocity impact damage, Computers & Structures, 86(11) (2008) 1232–1252.

    Article  Google Scholar 

  28. G. D. Fang, J. Liang and B. L. Wang, Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension, Composite Structures, 89(1) (2009) 126–133.

    Article  Google Scholar 

  29. J. Ubaid, M. Kashfuddoja and M. Ramji, Strength prediction and progressive failure analysis of carbon fiber reinforced polymer laminate with multiple interacting holes involving three dimensional finite element analysis and digital image correlation, International Journal of Damage Mechanics, 23(5) (2014) 609–635.

    Article  Google Scholar 

  30. Y. Wang, S. Zhu, J. Qi and J. Xiao, Development of a finite element model for progressive damage analysis of composite laminates subjected to low velocity impact, Polymers & Polymer Composites, 22(1) (2014) 73–78.

    Article  Google Scholar 

  31. Z. Chao, L. Ning, W. Wang, W. K. Binienda and H. Fang, Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model, Composite Structures, 125 (2015) 104–116.

    Article  Google Scholar 

  32. C. S. Lee, J. H. Kim, S. K. Kim, D. M. Ryu and J. M. Lee, Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method, Composite Structures, 121 (2015) 406–419.

    Article  Google Scholar 

  33. Z. Zhao, H. Dang, C. Zhang, G. J. Yun and Y. Li, A multiscale modeling framework for impact damage simulation of triaxially braided composites, Composites Part A: Applied Science and Manufacturing, 110 (2018) 113–125.

    Article  Google Scholar 

  34. Z. Zhao, P. Liu, C. Chen, C. Zhang and Y. Li, Modeling the transverse tensile and compressive failure behavior of triaxially braided composites, Composites Science and Technology, 172 (2019) 96–107.

    Article  Google Scholar 

  35. Stuttgart, Contimuum mesomechaniacal finite element modeling in materials development: a state of the art review, Advances in Mechanics, 32(3) (2002) 444–466.

    Google Scholar 

  36. S. E. Ashari and S. Mohammadi, Modeling delamination in composite laminates using XFEM by new orthotropic enrichment functions, IOP Conference Series: Materials Science and Engineering, 10(1) (2010) 012240.

    Article  Google Scholar 

  37. D. M. Grogan, S. B. Leen and C. M. Ó. Brádaigh, An XFEM-based methodology for fatigue delamination and permeability of composites, Composite Structures, 107(1) (2014) 205–218.

    Article  Google Scholar 

  38. M. Heidari-Rarani and M. Sayedain, Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches, Theoretical and Applied Fracture Mechanics, 103 (2019) 102246.

    Article  Google Scholar 

  39. D. M. Grogan, C. M. Ó. Brádaigh and S. B. Leen, A combined XFEM and cohesive zone model for composite laminate microcracking and permeability, Composite Structures, 120 (2015) 246–261.

    Article  Google Scholar 

  40. S. Khatir and M. A. Wahab, A computational approach for crack identification in plate structures using XFEM, XIGA, PSO and Jaya algorithm, Theoretical and Applied Fracture Mechanics, 103 (2019) 102240.

    Article  Google Scholar 

  41. S. C. Tan, A progressive failure model for composite laminates containing openings, Journal of Composite Materials, 25(5) (1991) 556–577.

    Article  Google Scholar 

  42. D. L. Flaggs and M. H. Kural, Experimental determination of the in situ transverse lamina strength in graphite/epoxy laminates, Journal of Composite Materials, 16(2) (1982) 103–116.

    Article  Google Scholar 

  43. ABAQUS User Manual, Pawtucket (RI); Hibbitt, Karlsson&Sorensen Inc. (2019).

  44. I. Shahid and F.-K. Chang, An accumulative damage model for tensile and shear failures of laminated, Composite Plates, 29(7) (1995) 926–981.

    Google Scholar 

  45. S. T. Pinho, Modelling Failure of Laminated Composites Using Physically-based Failure Models, Department of Aeronautics, Imperial College London, Imperial College London (2005).

  46. C. P. Maimi P, J. A. Mayugo and C. G. Davila, A continuum damage model for composite laminates: Part II — Computational implementation and validation, Mechanics of Materials, 39(10) (2007) 909–919.

    Article  Google Scholar 

  47. Z. Liu, Research on Progressive Damage Simulation and Experiment of Composite Lanina Based on Peridynamics, Department of Astronautic Science and Mechanics, Harbin Institute of Technology (2017) (in Chinese).

Download references

Acknowledgments

The research work is supported by the Fundamental Research Funds for the Central Universities (WUT: 2020III 066GX), Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, China Postdoctoral Science Foundation (No. 2018M632933) and the Foreign Science and Technology Cooperation Project of Hubei Provenience (Grant No. 2013BHE008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongfeng Cao or Haixiao Hu.

Additional information

Recommended by Editor Chongdu Cho

Decheng Liu received his B.E. degree from Wuhan University of Technology. He is currently a master student in Wuhan University of Technology. His research interests include strength theory and damage tolerance behavior of composite laminates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Cao, D., Hu, H. et al. Numerical study on failure behavior of open-hole composite laminates based on LaRC criterion and extended finite element method. J Mech Sci Technol 35, 1037–1047 (2021). https://doi.org/10.1007/s12206-021-0217-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-0217-9

Keywords

Navigation