Skip to main content
Log in

Functional Effects of the Use of Anesthetics on Teleostean Fishes (Review)

  • ECOLOGICAL PHYSIOLOGY AND BIOCHEMISTRY OF HYDROBIONTS
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

Data on the functional aspects of the effect of more than 25 types of anesthetic chemicals and physical factors on teleostean fishes are generalized. It is shown that most of the narcotic agents have a pronounced stress effect on the fish and radically change the fish state. Many of these agents cause a functional response at the level of separate physiological systems (respiration, blood circulation, and blood). It is concluded that the use of anesthetics should be differentiated in the practice of scientific research. For example, the use of isoeugenol (AQUI-S) has no effect on the level of cortisol and catecholamines in the blood. Propanidide and urethane are neutral agents with respect to the respiratory and circulatory systems. Alflaxalone and ketamine do not affect the cardiac rhythm. The hematological parameters have no statistically significant changes under the effect of thiopental. The processes of carbohydrate metabolism in fish tissues are insensitive to the following anesthetic agents: isoeugenol (AQUI-S), urethane, hydrochloride, and a combination of quinaldine with a muscle relaxant (diazepam). An analysis of the stages of narcotic state development in the fish has revealed the advantage of using urethane, hydrochloride, clove oil, and AQUI-S. These types of anesthesia are not characterized by the development of the excitement state; the individuals of many species immediately turn to the resting stage (loss of pain sensitivity), which is most suitable for carrying out manipulations with fish. This information makes it possible to reduce incidental functional effects that can be caused by manipulation measures or by the use of separate narcotic agents. This allows one to obtain more reliable results, especially during experimental works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Akbulut, B., Çakmak, E., Aksungur, N., and Çavdar, Y., Effect of exposure duration on time to recovery from anaesthesia of clove oil in juvenile of Russian sturgeon, Turk. J. Fish. Aquat. Sci., 2011, vol. 11, p. 463. https://doi.org/10.4194/1303-2712-v11_3_17

    Article  Google Scholar 

  2. Anderson, W.G., McKinley, R.S., and Colavecchia, M., The use of clove oil as an anesthetic for rainbow trout and its effects on swimming performance, North Am. J. Fish. Manage., 1997, vol. 17, no. 2, p. 301. https://doi.org/10.1577/1548-8675(1997)017<0301:TUOCOA>2.3.CO;2

    Article  Google Scholar 

  3. Barham, W.T. and Schoonbee, H.J., A comparison of the effects of alternating current electronarcosis, rectified current electronarcosis and chemical anaesthesia on the blood physiology of the freshwater bream Oreochromis mossambicus (Peters). I. The effect on blood pH, pO2, pCO2, glucose, lactate, LDH and HBDH, Comp. Biochem. Physiol., Part C: Comp. Pharmacol., 1990, vol. 96, no. 2, p. 333.

    Google Scholar 

  4. Barham, W.T. and Schoonbee, H.J., A comparison of the effects of alternating current electronarcosis, rectified current electronarcosis and chemical anaesthesia on the blood physiology of the freshwater bream Oreochromis mossambicus (Peters). 2. The effect on haematocrit, haemoglobin concentration, red cell count, mean cell volume, mean cell haemoglobin and mean cell haemoglobin concentration, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1991, vol. 98, no. 2, p. 179.

    Article  Google Scholar 

  5. Barham, W.T., Schoonbee, H.J., Visser, J.G.J., and Smit, G.L., A comparison of red-cell fragilities of electronarcotized and chemically anaesthetized freshwater bream, Oreochromis mossambicus, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1988, vol. 91, no. 2, p. 241.

    Google Scholar 

  6. Barton, B.A., Salmonid fishes differ in their cortisol and glucose responses to handling and transport stress, North Am. J. Aquacult., 2000, vol. 62, p. 12. https://doi.org/10.1577/1548-8454(2000)062<0012:SFDITC>2.0.CO;2

    Article  Google Scholar 

  7. Barton, B.A. and Peter, R.E., Plasma cortisol stress response in fingerling rainbow trout, Salmo gairdneri Richardson, to various transport conditions, anaesthesia, and cold shock, J. Fish. Biol., 2006, vol. 20, no. 1, p. 39. https://doi.org/10.1111/j.1095-8649.1982.tb03893.x

    Article  Google Scholar 

  8. Barton, B.A., Rahn, A.B., Feist, G., et al., Physiological stress responses of the freshwater chondrostean paddlefish (Polyodon spathula) to acute physical disturbances, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1998, vol. 120, p. 355. https://doi.org/10.1016/S1095-6433(98)10036-3

    Article  Google Scholar 

  9. Braley, H. and Anderson, T.A., Changes in blood metabolite concentrations in response to repeated capture, anaesthesia and blood sampling in the golden perch, Macquaria ambigua, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol.,1992, vol. 103, no. 3, p. 445.

    Google Scholar 

  10. Burleson, M.L. and Smatresk, N.J., The effect of decerebration and anesthesia on the reflex responses to hypoxia in catfish, Can. J. Zool., 1989, vol. 67, no. 3, p. 630.

    Article  Google Scholar 

  11. Carragher, J.F. and Rees, C.M., Primary and secondary stress responses in golden perch, Macquaria ambigua, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., vol. 107, no. 1, p. 49.

  12. Chance, R.J., Cameron, G.A., Fordyce, M., et al., Effects of repeated anaesthesia on gill and general health of Atlantic Salmon, Salmo salar, J. Fish. Biol., 1994, vol. 93, no. 6, p. 1069. https://doi.org/10.1111/jfb.13803

    Article  CAS  Google Scholar 

  13. Chiba, A. and Chichibu, S., High-energy phosphate metabolism in the phenthiazamine hydrobromide anesthetized loach Cobitis biwae, Comp. Biochem. Physiol., Part C: Comp. Pharmacol., 1992, vol. 102, no. 3, p. 433.

    Google Scholar 

  14. Chiba, A. and Chichibu, S., High-energy phosphate metabolites in loach (Cobitis biwae) during urethane anesthesia, Comp. Biochem. Physiol., Part C: Comp. Pharmacol., 1993, vol. 106, no. 1, p. 87.

    Google Scholar 

  15. Chiba, A., Hamaguchi, M., Kosaka, M., et al., In vivo 31P-NMR analysis of the electric anesthetized loach, Cobitis biswae, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1990a, vol. 97, no. 3, p. 385.

    Google Scholar 

  16. Chiba, A., Hamaguchi, M., Kosaka, M., et al., Energy metabolism in unrestrained fish with in vivo 31P-NMR, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1990b, vol. 96, no. 2, p. 253.

    Article  Google Scholar 

  17. Chiba, A., Hamaguchi, M., Tokuno, T., et al., Changes in high-energy phosphate metabolites in loaches (Cobitis biwae) during 2-phenoxyethanol anesthesia, Comp. Biochem. Physiol., Part C: Comp. Pharmacol., 1990c, vol. 97, no. 1, p. 183.

    Google Scholar 

  18. Cooper, A.R. and Morris, S., The blood respiratory, haematological, acid-base and ionic status of the Port Jackson shark, Heterodontus portusjacksoni, during recovery from anaesthesia and surgery: a comparison with sampling by direct caudal puncture, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1998, vol. 119, no. 4, p. 895.

    Article  Google Scholar 

  19. Cornish, I.M.E. and Moon, T.W., The glucose and lactate kinetics of American eels, Anguilla rostrata (LeSueur), under MS 222 anaesthesia, J. Fish. Biol., 1986, vol. 28, no. 1, p. 1.

    Article  CAS  Google Scholar 

  20. D’yakonov, Yu.N., Influence of anesthetic 2-methyl-4-vinyloxyquinoline hydrochloride on respiration and cardiac activity of carp, Sb. Nauch. Tr. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 1980, no. 157, p. 50.

  21. Davidson, G., Davie, P.S., Young, G., and Fowler, R.T., Physiological responses of rainbow trout Oncorhynchus mykiss to crowding and anesthesia with AQUI-S™, J. World Aquacult. Soc., 2000, vol. 31, no. 1, p. 105. https://doi.org/10.1111/j.1749-7345.2000.tb00704.x

    Article  Google Scholar 

  22. Davis, K.B. and Griffin, B.R., Physiological responses of hybrid striped bass under sedation by several anesthetics, Aquaculture, 2004, vol. 233, no. 1. https://doi.org/10.1016/j.aquaculture.2003.09.018

  23. Deacon, N., White, H., and Hecht, T., Isolation of the effective concentration of 2-phenoxyethanol for anaesthesia in the spotted grunter, Pomadasys commersonnii, and its effect on growth, Aquarium Sci. Conserv., 1997, vol. 1, no. 1, p. 19.

    Article  CAS  Google Scholar 

  24. Epple, A., Navarro, I., Horak, P., and Spector, S., Endogenous morphine and codeine: release by the chromaffin cells of the eel, Life Sci., 1993, vol. 52, no. 16, p. PL117.

    Article  CAS  PubMed  Google Scholar 

  25. Ferreira, J.T., Schoonbee, H.J., and Smit, G.L., The uptake of the anaesthetic benzocaine hydrochloride by the gills and skin of three freshwater fish species, J. Fish. Biol., 2006, vol. 25, no. 1, p. 35. https://doi.org/10.1111/j.1095-8649.1984.tb04848.x

    Article  Google Scholar 

  26. Gabryelak, T., Zalesna, G., Roche, H., and Peres, G., The effect of MS-222 an anaestetics on the peroxide metabolism enzymes in erythrocytes of freshwater and marine fish species, Comp. Biochem. Physiol., Part C: Comp. Pharmacol., 1989, vol. 92, no. 1, p. 5.

    CAS  Google Scholar 

  27. Githuria, C.M., Kembenya, E.M., and Opiyo, M.A., Anaesthetic effects of sodium bicarbonate at different concentrations on African catfish (Clarias gariepinus) juveniles, J. Aquacult. Eng. Fish. Res., 2016, vol. 2, no. 3, p. 151. https://doi.org/10.3153/JAEFR16017

    Article  Google Scholar 

  28. Groettum, J.A., Erikson, U., Grasdalen, H., and Staurnes, M., In vivo 31P-NMR spectroscopy and respiration measurements of anaesthetized goby (Pomatoschistus sp.) pre-exposed to ammonia, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1998, vol. 120, no. 3, p. 469.

    Article  Google Scholar 

  29. Handa, T., Namba, K., Uematsu, K., and Yoshida, M., Blood properties and cardiovascular function after the cannulation into the dorsal aorta in carp, Cyprinus carpio, Appl. Biol. Sci., 1996, vol. 35, no. 2, p. 139.

  30. Hansen, M.K., Nymoen, U., and Horsberg, T.E., Pharmokinetic and pharmacodynamic properties of metomidate in turbot (Scophthalmus maximus) and halibut (Hippoglossus hippoglossus), J. Vet. Pharmacol. Ther., vol. 26, no. 2, p. 95. https://doi.org/10.1046/j.1365-2885.2003.00454.x

  31. Harms, C.A., Lewbart, G., Swanson, C.R., and Boylan, S.M., Behavioral and clinical pathology changes in koi carp (Cyprinus carpio) subjected to anesthesia and surgery with and without intra-operative analgesics, Comp. Med., 2005, vol. 55, no. 3, p. 221.

    CAS  PubMed  Google Scholar 

  32. Haux, C., Sjobeck, M.L., and Larsson, A., Physiological stress responses in a wild fish population of perch (Perca fluviatilis) after capture and during subsequent recovery, Mar. Environ. Res., 1985, vol. 15, no. 2, p. 77.

    Article  CAS  Google Scholar 

  33. Hedrick, M.S. and Winmill, R.E., Excitatory and inhibitory effects of tricaine (MS-222) on fictive breathing in isolated bullfrog brain stem, AJP Regul. Integr. Comp. Physiol., 2003, vol. 284, no. 2, p. R405. https://doi.org/10.1152/ajpregu.00418.2002

    Article  CAS  Google Scholar 

  34. Hikasa, Y., Anesthesia and recovery with tricaine methanesulfonate, eugenol and thiopental sodium in the carp, Cyprinus carpio, Jpn. J. Vet. Sci., 1986, vol. 48, no. 2, p. 341.

    Article  CAS  Google Scholar 

  35. Hill, J.V. and Forster, M.E., Cardiovascular responses of Chinook Salmon (Oncorhynchus tshawytscha) during rapid anesthetic induction and recovery, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2004, vol. 137, no. 2, p. 167. https://doi.org/10.1016/j.cca.2004.01.002

    Article  CAS  Google Scholar 

  36. Hill, J.V., Davison, B., and Forster, M.E., The effects of fish anaesthetics (MS222, metomidate and AQUI-S) on heart ventricle, the cardiac vagus and branchial vessels from Chinook salmon (Oncorhynchus tshawytscha), Fish Physiol. Biochem., 2002, vol. 27, no. 1, p. 19. https://doi.org/10.1023/B:FISH.0000021742.30567.2d

  37. Hoffman, R., Lommel, R., and Riedl, M., Influence of different anaesthetics and bleeding methods on hematological values in fish, Arch. Fischereiwiss., 1982, vol. 33, nos. 1–2, p. 91.

    Google Scholar 

  38. Holloway, A.C., Keene, J.L., Noakes, D.L.G., and Moccia, R.D., Effects of clove oil and MS-222 on blood hormone profiles in rainbow trout Oncorhynchus mykiss, Walbaum, Aquacult. Res., 2004, vol. 35, no. 11, p. 1025. https://doi.org/10.1111/j.1365-2109.2004.01108.x

    Article  CAS  Google Scholar 

  39. Houston, A.H., Czerwinski, C.L., and Woods, R.J., Cardiovascular–respiratory activity during recovery from anesthesia and surgery in brook trout (Salvelinus fontinalis) and carp (Cyprinus carpio), J. Fish. Res. Board Can., 1973, vol. 30, no. 11, p. 1705.

    Article  Google Scholar 

  40. Hseu, J.R., Yeh, Sh.L., Chu, Y.T., and Ting, Y.Y., The changes of hematological parameters during sustained anaesthesia with 2-phenoxyethanol in yellowfin porgy (Acanthopagrus latus), J. Taiwan Fish. Res., 1994, vol. 2, no. 2, p. 63.

    Google Scholar 

  41. Itazawa, Y. and Takeda, T., Respiration of carp under anesthesia induced by mixed bubbling of carbon dioxide and oxygen, Bull. Jpn. Soc. Sci. Fish., 1982, vol. 48, no. 4, p. 489.

    Article  CAS  Google Scholar 

  42. Iwama, G.K., Mcgeer, J.C., and Pawluk, M.P., The effects of five fish anaesthetics on acid-base balance, hematocrit, blood gases, cortisol, and adrenaline in rainbow trout, Can. J. Zool., 2011, vol. 67, no. 8, p. 2065.

    Article  Google Scholar 

  43. Javaheri, S. and Moradlu, A.H., AQUI-S, a new anesthetic for use in fish propagation, Global Vet., 2012, vol. 9, no. 2, p. 205. https://doi.org/10.5829/idosi.gv.2012.9.2.64167

    Article  Google Scholar 

  44. Karlsson-Drangsholt, A., Rosseland, B.O., Massabuau, J-C., and Kiessling, A., Pre-anaesthetic metomidate sedation delays the stress response after caudal artery cannulation in Atlantic cod (Gadus morhua), Fish Physiol. Biochem., 2011, vol. 38, no. 2, p. 401.

    Article  CAS  Google Scholar 

  45. Kazuñ, K. and Siwicki, A.K., Propiscin—a safe new anaesthetic for fish, Arch. Pol. Fish., 2012, vol. 20, p. 173. https://doi.org/10.2478/v10086-012-0021-3

    Article  Google Scholar 

  46. Kiessling, A., Johansson, D., Zahl, I.H., and Samuelsen, O.B., Pharmacokinetics, plasma cortisol and effectiveness of benzocaine, MS-222 and isoeugenol measured in individual dorsal aorta-cannulated Atlantic salmon (Salmo salar) following bath administration, Aquaculture, 2009, vol. 296, nos. 3–4, p. 301. https://doi.org/10.1016/j.aquaculture.2008.09.037

    Article  CAS  Google Scholar 

  47. Kildea, M.A., Allan, G.L., and Kearney, R.E., Accumulation and clearance of the anaesthetics clove oil and AQUI-S™ from the edible tissue of silver perch (Bidyanus bidyanus), Aquaculture, 2004, vol. 232, nos. 1–4, p. 265. https://doi.org/10.1016/s0044-8486(03)00483-6

    Article  CAS  Google Scholar 

  48. King, W., Hooper, B., Hillsgrove, S., and Berlinsky, D.L., The use of clove oil, metomidate, tricaine methanesulphonate and 2-phenoxyethanol for inducing anaesthesia and their effect on the cortisol stress response in black sea bass (Centropristis striata L.), Aquacult. Res., 2005, vol. 36, no. 14, p. 1442. https://doi.org/10.1111/j.1365-2109.2005.01365.x

    Article  CAS  Google Scholar 

  49. Knoph, M.B., Effects of metomidate anaesthesia or transfer to pure sea water on plasma parameters in ammonia-exposed Atlantic Salmon (Salmo salar L.) in sea water, Fish Physiol. Biochem., 1995, vol. 14, no. 2, p. 103. https://doi.org/10.1007/BF00002454

    Article  CAS  PubMed  Google Scholar 

  50. Kohbarae, J., Nanda, K., and Murachi, S., The heart rate of carp anesthetized with tetraethylene glycol dibutyl etther, Bull. Jpn. Soc. Sci. Fish., 1987, vol. 53, no. 4, p. 681.

    Article  Google Scholar 

  51. Korcock, D.E., Houston, A.H., and Gray, J.D., Effects of sampling conditions on selected blood variables of rainbow trout, Salmo gairdneri Richardson, J. Fish. Biol., 1988, vol. 33, no. 2, p. 319.

    Article  CAS  Google Scholar 

  52. Korstrom, J.S., Birtwell, I.K., Piercey, G.E., et al., Effect of hypoxia, fresh water, anaesthesia and sampling technique on the hematocrit values of adult sockeye Salmon (Oncorhynchus nerka), Can. Tech. Rep. Fish. Aquat. Sci., 1996, p. 34.

  53. Krejszeff, S., Żarski, D., Palińska-Żarska, K., et al., Procedure for harmless estimation of fish larvae weight, Ital. J. Anim. Sci., 2013, vol. 12, no. 44, p. 270. https://doi.org/10.4081/ijas.2013.e44

    Article  Google Scholar 

  54. Kristan, J., Stara, A., Polgesek, M., et al., Efficacy of different anaesthetics for pikeperch (Sander lucioperca L.) in relation to water temperature, Neuroendocrinol. Lett., 2014, vol. 35, suppl. 2, p. 81.

    PubMed  Google Scholar 

  55. Laidley, C.W. and Leatherland, J.F., Cohort sampling, anaesthesia and stocking-density effects on plasma cortisol, thyroid hormone, metabolite and ion levels in rainbow trout, Salmo gairdneri R., J. Fish. Biol., 1988, vol. 33, no. 1, p. 73.

    Article  CAS  Google Scholar 

  56. Lambooij, B., Pilarczyk, M., Bialowas, H., and Van de Vis, H., Anaesthetic properties of propiscin (etomidaat) and 2-phenoxyethanol in the common carp (Cyprinus carpio L.), neural and behavioural measures, Aquacult. Res., 2009, vol. 40, no. 11, p. 1328. https://doi.org/10.1111/j.1365-2109.2009.02233.x

    Article  CAS  Google Scholar 

  57. Limanskii, V.V. and Martem’yanov, V.I., Electrocardiographic determination of the degree of fish anesthesia, VI Vses. konf. po ekologicheskoi fiziologii i biokhimii ryb (sentyabr’, 1985), Tezisy dokladov (VI All-Union Conf. on Ecological Physiology and Biochemistry of Fishes, September 1985, Abstracts of Papers), Vilnius, 1985, p. 119.

  58. Margaritov, N., Effect of the anesthetic tricaine methanesulfonate (MS-222) on the size and age composition of erythrocytes in carp peripheral blood, Sof. Univ. Biol. Fak. Zool., 1984, vol. 75, no. 1, p. 71.

    Google Scholar 

  59. Martins, T., Valentim, A., Pereira, N., and Antunes, L.M., Anaesthetics and analgesics used in adult fish for research: a review, Lab. Anim., 2019, vol. 53, no. 4, p. 325. https://doi.org/10.1177/0023677218815199

    Article  CAS  PubMed  Google Scholar 

  60. Marx, H., Brunner, B., Weinzierl, W., et al., Comparative investigations on different methods for stunning fish with special regard to meat quality parameters, in Proc. Conf. IIR Comm. C2, Paris: Ins. Inter. Du Froid, 1996, p. 199.

  61. Medeiros Júnior, E.F., Uehara, S.A., et al., Effectiveness of benzocaine as anesthetic at different water temperatures for early juvenile curimba (Prochilodus lineatus valenciennes, 1836), a neotropical fish species, Bol. Inst. Pesca, 2019, vol. 45, no. 3, p. 474. https://doi.org/10.20950/1678-2305.2019.45.3.474

    Article  Google Scholar 

  62. Mirosnichenko, O.R., Injection anesthesia of carp, Sb. Nauchn. Tr. Vses. Nauchno-Issled. Inst. Prud. Rybn. Khoz., 1990, no. 59, p. 163.

  63. Morales, A.E., Cardenete, G., Abellan, E., and Garcia-Rejon, L., Stress-related physiological responses to handling in common dentex (Dentex dentex Linnaeus, 1758), Aquacult. Res., 2005, vol. 36, p. 33. https://doi.org/10.1111/j.1365-2109.2004.01180.x

    Article  Google Scholar 

  64. Mylonas, C.C., Cardinaletti, G., Sigelaki, I., and Polzonetti-Magni, A., Comparative efficacy of clove oil and 2-phenoxyethanol as anesthetics in the aquaculture of European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) at different temperatures, Aquaculture, 2005, vol. 246, no. 1, p. 467. https://doi.org/10.1016/j.aquaculture.2005.02.046

    Article  CAS  Google Scholar 

  65. Neiffer, D. and Stamper, M.A., Fish sedation, anesthesia, analgesia, and euthanasia: considerations, methods, and types of drugs, ILAR J, 2009, vol. 50, no. 4, p. 343. https://doi.org/10.1093/ilar.50.4.343

    Article  CAS  PubMed  Google Scholar 

  66. Oikari, A. and Soivio, A., Influence of sampling methods and anaesthetization on various haematological parameters of several teleosts, Aquaculture, 1975, vol. 6, no. 2, p. 171.

    Article  CAS  Google Scholar 

  67. Ortuño, J., Esteban, M.A., and Meseguer, J., Effects of four anaesthetics on the innate immune response of gilthead seabream (Sparus aurata L.), Fish Shellfish Immunol., 2002, vol. 12, no. 1, p. 49. https://doi.org/10.1006/fsim.2001.0353

    Article  PubMed  Google Scholar 

  68. Oswald, R.L., Injection anaesthesia for experimental studies in fish, Comp. Biochem. Physiol., Part C: Comp. Pharmacol.,1978, vol. 60, no. 1, p. 19.

    CAS  Google Scholar 

  69. Parma de Croux, M.J. and Montagna, M., Efficacy of benzocaine as an anesthetic for juveniles Pimelodus clarias maculatus (Pisces, Pimelodidae), Iheringia Ser. Zool., 1998, no. 84, p. 29.

  70. Peake, S., Sodium bicarbonate and clove oil as potential anesthetics for non-Salmonid fishes, North Am. J. Fish Manage., 1998, vol. 18, no. 4, p. 919. https://doi.org/10.1577/1548-8675(1998)018<0919:SBACOA>2.0.CO;2

    Article  Google Scholar 

  71. Pearson, M.P. and Stevens, E.D., Size and hematological impact of the splenic erythrocyte reservoir in rainbow trout, Oncorhynchus mykiss, Fish Physiol. Biochem., 1991, vol. 9, no. 1, p. 39.

    Article  CAS  PubMed  Google Scholar 

  72. Popovic, N.T., Strunjak-Perovic, I., Coz-Rakovac, R., et al., Tricaine methane-sulfonate (MS-222) application in fish anaesthesia (review), J. Appl. Ichthyol., 2012, vol. 28, p. 553. https://doi.org/10.1111/j.1439-0426.2012.01950.x

    Article  CAS  Google Scholar 

  73. Post, G., Carbonic acid anesthesia for aquatic organisms, Progr. Fish-Cult., 1979, vol. 41, no. 3, p. 142.

    Article  Google Scholar 

  74. Purbosari, N., Warsikic, E., Syamsuc, K., and Santosod, J., Natural versus synthetic anesthetic for transport of live fish: a review, Aquacult. Fish., 2019, no. 4, p. 129.

  75. Readman, G.D., Owen, S.F., Knowles, T.G., and Murrell, J.C., Species specific anaesthetics for fish anaesthesia and euthanasia, Sci. Rep., 2017, vol. 7, no. 1, p. 7102. https://doi.org/10.1038/s41598-017-06917-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Regan, M.D., Turko, A.J., Heras, J., et al., Ambient CO2, fish behaviour and altered gabaergic neurotransmission: exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels, J. Exp. Biol., 2016, vol. 219, p. 109. https://doi.org/10.1242/jeb.131375

    Article  PubMed  Google Scholar 

  77. Roubach, R., De-Carvalho-Gomes, L., and Val, A.L., Safest level of tricaine methanesulfonate (MS-222) to induce anesthesia in juveniles of matrinxa, Brycon cephalus, Acta Amazon., 2001, vol. 31, no. 1, p. 159. https://doi.org/10.1590/1809-43922001311163

    Article  CAS  Google Scholar 

  78. Rożyński, M., Demska-Zakęś, K., Sikora, A., and Zakęś, Z., Impact of inducing general anesthesia with propiscin (etomidate) on the physiology and health of European perch (Perca fluviatilis L.), Fish Physiol. Biochem., 2018, vol. 44, no. 3, p. 927. https://doi.org/10.1007/s10695-018-0482-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ryan, S., The dynamics of MS-222 anaesthesia in a marine teleost (Pagrus auratus: Sparidae), Comp. Biochem. Physiol., Part C: Comp. Pharmacol., 1992, vol. 101, no. 3, p. 593.

    CAS  Google Scholar 

  80. Ryan, S.N., Davie, P.S., Gesser, H., and Wells, R.M.G., The effect of MS-222 on paced ventricle strips and the perfused heart of rainbow trout, Oncorhyncus mykiss, Comp. Biochem. Physiol., Part C: Comp. Pharmacol., 1993, vol. 106, no. 2, p. 549.

    Google Scholar 

  81. Sandodden, R., Finstad, B., and Iversen, M., Transport stress in Atlantic Salmon (Salmo salar): anaesthesia and recovery comparative physiology and biochemistry, Aquacult. Res., 2001, vol. 32, p. 987. https://doi.org/10.1046/j.1365-2109.2001.00533.x

    Article  Google Scholar 

  82. Sherwani, F.A. and Parwez, I., Effects of stress and food deprivation on catfish, Heteropneustes fossilis (Bloch), Indian J. Exp. Biol., 2000, vol. 38, no. 4, p. 379.

    CAS  PubMed  Google Scholar 

  83. Silbernagel, C. and Yochem, P., Effectiveness of the anesthetic AQUI-S® 20E in marine finfish and elasmobranchs, J. Wild. Dis., 2016, vol. 52, no. 2, pp. S96–S103. https://doi.org/10.7589/52.2S.S96

    Article  CAS  Google Scholar 

  84. Simões, L.N., Lombardi, D.C., Gomide, A.T.M., and Gomes, L.C., Efficacy of clove oil as anesthetic in handling and transportation of Nile tilapia, Oreochromis niloticus (Actinopterygii: Cichlidae) juveniles, Zoologia, 2011, vol. 28, no. 3, p. 285. https://doi.org/10.1590/S1984-46702011000300001

    Article  Google Scholar 

  85. iwicki, A., Znieczulenie ogolne u ryb. Czesc I. Nowy preparat do znieczulenia ogolnego ryb, Gosp. Ryb., 1983, vol. 35, no. 11, p. 5

    Google Scholar 

  86. Small, B.C., Anesthetic efficacy of metomidate and comparison of plasma cortisol responses to tricaine methanesulfonate, quinaldine and clove oil anesthetized channel catfish Ictalurus punctatus, Aquaculture, 2003, vol. 218, nos. 1–4, p. 177. https://doi.org/10.1016/s0044-8486(02)00302-2

    Article  CAS  Google Scholar 

  87. Small, B.C., Effect of isoeugenol sedation on plasma cortisol, glucose, and lactate dynamics in channel catfish Ictalurus punctatus exposed to three stressors, Aquaculture, 2004, vol. 238, nos. 1–4, p. 469. https://doi.org/10.1016/j.aquaculture.2004.05.021

    Article  CAS  Google Scholar 

  88. Small, B.C. and Chatakondi, N.G., Routine measures of stress are reduced in mature channel catfish during and after aqui-s anesthesia and recovery, North Am. J. Aquacult., 2005, vol. 67, no. 1, p. 72.

    Article  Google Scholar 

  89. Smith, M.F.L., Capture and transportation of elasmobranchs, with emphasis on the grey nurse shark (Carcharias taurus), Aust. J. Mar. Freshwater Res., 1992, vol. 43, no. 1, p. 325.

    Article  CAS  Google Scholar 

  90. Smit, G.L., Hattingh, J., and Burger, A.P., Haematological assessment of the effects of the anaesthetic MS-222 in natural and neutralized form in three freshwater fish species: haemoglobin electrophoresis, ATP levels and corpuscular fragility curves, J. Fish. Biol., 1979, vol. 15, no. 6, p. 655.

    Article  CAS  Google Scholar 

  91. Soivio, A. and Hughes, G.M., Circulatory changes in secondary lamellae of Salmo gairdneri gills in hypoxia and anaesthesia, Ann. Zool. Fenn., 1978, vol. 15, no. 3, p. 221.

    Google Scholar 

  92. Soivio, A., Nyholm, K., and Huhti, M., Effects of anaesthesia with MS 222, neutralized MS 222 and benzocaine on the blood constituents of rainbow trout, Salmo gairdneri, J. Fish. Biol., 2006, vol. 10, no. 1, p. 91. https://doi.org/10.1111/j.1095-8649.1977.tb04045.x

    Article  Google Scholar 

  93. Soldatov, A.A., Oxygen-dissociation properties of blood and intraerythrocytic medium composition in sea fish with different motor activity, J. Evol. Biochem. Physiol., 1997, vol. 33, no. 6, p. 534.

    Google Scholar 

  94. Soldatov, A.A., Physiological aspects of effects of urethane anesthesia on the organism of marine fishes, Hydrobiol. J., 2005, vol. 41, no. 1, p. 113. https://doi.org/10.1615/HydrobJ.v41.i1.130

    Article  Google Scholar 

  95. Soldatov, A.A., Parfyonova, I.A., and Novitskaya, V.N., Contents of monovalent cations and atp in erythrocytes of marine fishes under experimental hypoxia, Ukr. Biokhim. Zh., 2010, vol. 82, no. 2, p. 36.

    CAS  Google Scholar 

  96. Soto, C., Clove oil: a fish anaesthetic, Window Newsl., 1995, vol. 6, no. 2, p. 2.

    Google Scholar 

  97. Spotte, S., Bubucis, P.M., and Anderson, G., Plasma cortisol response of seawater-adapted mummichogs (Fundulus heteroclitus) during deep MS-222 anesthesia, Zoo-Biol., 1991, vol. 10, no. 1, p. 75.

    Article  CAS  Google Scholar 

  98. Strebkova, T.P., Influence of anesthetics (sodium thiopental) on physiological parameters of underyearlings of mirror carp, Vopr. Ikhtiol., 1972, vol. 12, no. 2, p. 397.

    Google Scholar 

  99. Sumpter, J.P., Ehe endocrinology of stress, in Fish Stress and Health in Aquaculture, Soc. Exp. Biol. Sem., Ser. 62, Cambridge: Cambridge Univ. Press, 1997, p. 95.

  100. Takeda, T., Yamasaki, K., and Itazawa, Y., Effect of MS-222 on respiration and effectiveness of artificial gills irrigation by anaestetic solution in carp, Bull. Jpn. Soc. Sci. Fish., 1987, vol. 53, no. 10, p. 1701.

    Article  CAS  Google Scholar 

  101. Thomas, P. and Robertson, L., Plasma cortisol and glucose stress responses of red drum (Sciaenops ocellatus) to handling and shallow water stressors and anesthesia with MS-222, quinaldine sulfate and metomidate, Aquaculture, 1991, vol. 96, no. 1, p. 69.

    Article  CAS  Google Scholar 

  102. Trushenski, J.T., Bowker, J.D., Cooke, S.J., et al., Issues regarding the use of sedatives in fisheries and the need for immediate-release options, Trans. Am. Fish. Soc., 2013, vol. 142, no. 1, p. 156. https://doi.org/10.1080/00028487.2012.732651

    Article  CAS  Google Scholar 

  103. Valentim, A.M., Félix, L.M., Carvalho, L., et al., A new anaesthetic protocol for adult zebrafish (Danio rerio): propofol combined with lidocaine, PLoS One, 2016, vol. 11, p. 1. https://doi.org/10.1371/journal.pone.0147747

    Article  CAS  Google Scholar 

  104. Veenstra, R.S., Balon, E.K., and Flegler-Balon, Ch., Propanidid—a usefull anaesthetic for studying blood circulation in early development of fish, Can. J. Zool., 1987, vol. 65, no. 5, p. 1286.

    Article  CAS  Google Scholar 

  105. Velisek, J., Stejskal, V., Kouřil, J., and Svobodová, Z., Comparison of the effects of four anaesthetics on biochemical blood profiles of perch, Aquacult. Res., 2009, vol. 40, no. 3, p. 354. https://doi.org/10.1111/j.1365-2109.2008.02102.x

    Article  CAS  Google Scholar 

  106. Vijayan, M.M., Pereira, C., Grau, E.G., and Iwama, G.K., Metabolic responses associated with confinement stress in tilapia: the role of cortisol, Comp. Biochem. Physiol., Part C: Comp. Pharmacol., 1997, vol. 116, p. 89.

    Google Scholar 

  107. Wang, Y., Wilkie, M.P., Heigenhauser, G.J.F., and Wood, C.M., The analysis of metabolites in rainbow trout white muscle: a comparison of different sampling and processing methods, J. Fish. Biol., 1994, vol. 45, no. 5, p. 855. https://doi.org/10.1111/j.1095-8649.1994.tb00950.x

    Article  CAS  Google Scholar 

  108. Weber, R.A., Peleteiro, J.B., Garcia-Martin, L.O.G., and Aldegunde, M., The efficacy of 2-phenoxyethanol, metomidate, clove oil and MS-222 as anaesthetic agents in the Senegalese sole (Solea senegalensis Kaup 1858), Aquaculture, 2009, vol. 288, nos. 1–2, p. 147. https://doi.org/10.1016/j.aquaculture.2008.11.024

    Article  CAS  Google Scholar 

  109. Wendelaar Bonga, S.E., The stress response in fish, Physiol. Rev., 1997, vol. 77, p. 591. https://doi.org/10.1152/physrev.1997.77.3.591

    Article  CAS  PubMed  Google Scholar 

  110. Weyl, O.L., Kaiser, H., and Hecht, T., On the efficacy and mode of action of 2-phenoxyethanol as an anaesthetic for goldfish, Carassius auratus (L.), at different temperatures and concentrations, Aquacult. Res., 2008, vol. 27, no. 10, p. 757. https://doi.org/10.1046/j.1365-2109.1996.t01-1-00791.x

    Article  Google Scholar 

  111. White, H.I., Hecht, T., and Potgieter, B., The effect of four anaesthetics on Haliotis midae and their suitability for application in commercial abalone culture, Aquaculture, 1996, vol. 140, nos. 1–2, p. 145.

    Article  CAS  Google Scholar 

  112. Witeska, M., Dudyk, J., and Jarkiewicz, N., Haematological effects of 2-phenoxyethanol and etomidate in carp (Cyprinus carpio L.), Vet. Anaesth. Analg., 2015, vol. 42, no. 5, p. 537. https://doi.org/10.1111/vaa.12242

    Article  CAS  PubMed  Google Scholar 

  113. Woolsey, J., Holcomb, M., and Ingermann, R.L., Effect of temperature on clove oil anesthesia in steelhead fry, North Am. J. Aquacult., 2004, vol. 66, no. 1, p. 35. https://doi.org/10.1577/A03-008

    Article  Google Scholar 

  114. Wright, S. and Forster, M.E., Anaesthetic effects on the hepatic portal vein and on the vascular resistance of the tail of the Chinook Salmon (Oncorhynchus tshawytscha), Fish Physiol. Biochem., 2005, vol. 31, no. 1, p. 11.

    Article  CAS  Google Scholar 

  115. Yanar, M. and Kumlu, M., The anaesthetics effects of quinaldine sulphate and/or diazepam on sea bass (Dicentrarchus labrax) juveniles, Turk. J. Vet. Anim. Sci., vol. 25, no. 2, p. 185.

  116. Yin, M., Batty, R.S., Franklin, C.E., and Johnston, I.A., The influence of temperature and activity on oxygen consumption of larval herring (Clupea harengus L.), Oceanol. Limnol. Sin., 1995, vol. 26, no. 3, p. 285.

    Google Scholar 

  117. Yokoyama, Y., Kawai, F., and Kanamori, M., Effect of cold CO2 anesthesia on postmortem levels of ATP-related compounds, pH, and glycogen in carp muscle, Bull. Jpn. Soc. Sci. Fish., 1993, vol. 59, no. 12, p. 2047.

    Article  Google Scholar 

  118. Yokoyama, T., Azuma, Y., Sakaguchi, M., Kawai, F., and Kanamori, M., 31P NMR study of bioenergetic changes in carp muscle with cold-CO2 anethesia and non-destructive evaluation of freshness, Fish. Sci., 1996, vol. 62, no. 2, p. 267.

    Article  CAS  Google Scholar 

  119. Yoshikawa, H., Yokoyama, Y., Ueno, S., and Mitsuda, H., Changes of blood gas in carp, Cyprinus carpio, anesthetized with carbon dioxide, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1991a, vol. 98, nos. 3–4, p. 431.

    Article  Google Scholar 

  120. Yoshikawa, H., Yokoyama, Y., Ueno, S., and Mitsuda, H., Electroencephalographic spectral analysis in carp, Cyprinus carpio, anesthetized with high concentrations of carbon dioxide, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1991b, vol. 98, nos. 3-4, p. 437.

    Article  Google Scholar 

  121. Zahl, I.H., Kiessling, A., Samuelsen, O.B., and Hansen, M.K., Anaesthesia of Atlantic cod (Gadus morhua)—effect of pre-anaesthetic sedation, and importance of body weight, temperature and stress, Aquaculture, 2009, vol. 95, nos. 1–2, p. 52. https://doi.org/10.1016/j.aquaculture.2009.06.019

    Article  CAS  Google Scholar 

  122. Zahl, I.H., Kiessling, A., Samuelsen, O.B., and Hansen, M.K., Anaesthesia of Atlantic halibut (Hippoglossus hippoglosus)—effect of pre-anaesthetic sedation and importance of body weight and water temperature, Aquacult. Res., 2010a, vol. 42, no. 9, p. 1235. https://doi.org/10.1111/j.1365-2109.2010.02711.x

    Article  Google Scholar 

  123. Zahl, I.H., Kiessling, A., Samuelsen, O.B., and Olsen, R.E., Anesthesia induces stress in Atlantic Salmon (Salmo salar), Atlantic cod (Gadus morhua) and Atlantic halibut (Hippoglossus hippoglossus), Fish Physiol. Biochem., 2010b, vol. 36, no. 3, p. 719. https://doi.org/10.1007/s10695-009-9346-2

    Article  CAS  PubMed  Google Scholar 

  124. Zahl, I.H., Samuelsen, O.B., and Kiessling, A., Anesthesia of farmed fish: implications for welfare, Fish Physiol. Biochem., 2011, vol. 38, no. 1, p. 201. https://doi.org/10.1007/s10695-011-9565-1

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by state topic no. AAAA-A18-118021490093-4 and partially supported by the Russian Foundation for Basic Research, project no. 20-44-920001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Soldatov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by D. Zabolotny

Abbreviations: AQUI-S, isoeugenol; MS-222, sodium tricaine methanesulfonate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatov, A.A. Functional Effects of the Use of Anesthetics on Teleostean Fishes (Review). Inland Water Biol 14, 67–77 (2021). https://doi.org/10.1134/S1995082920060139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082920060139

Keywords:

Navigation