Skip to main content
Log in

Modeling of compact stars: an anisotropic approach

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We present here a new class of singularity free interior solutions relevant for the description of realistic anisotropic compact stellar objects with spherically symmetric matter distribution. In this geometric approach, specific choices of one of the metric functions and a selective anisotropic profile allow us to develop a stellar model by solving Einstein Field equations. The interior solutions thus obtained are matched with the Schwarzschild exterior metric over the bounding surface of a compact star. These matching conditions together with the condition that the radial pressure vanishes at the boundary are used to fix the model parameters. The different physical features for the developed model explicitly studied from the aspect of the pulsar 4U\(1820-30\) with its current estimated data (mass \(=1.46 \pm 0.21~M\odot \) and radius \(=11.1 \pm 1.8\) km (Özel et al.: ApJ 820(1): 28, 2016) ). Analysis has shown that all the physical aspects are acceptable demanded for a physically admissible star and satisfy all the required physical conditions. The stability of the model is also explored in the context of causality conditions, adiabatic index, generalized Tolman–Oppenheimer–Volkov (TOV) equation, Buchdahl Condition and Herrera Cracking Method. To show that the developed model is compatible with a wide range of recently observed pulsars, various relevant physical variables are also highlighted in tabular form. The data studied here are in agreement with the observation of gravitational waves from the first binary merger event. Assuming a particular surface density (\(7.5 \times 10^{14}\text { gm cm}^{-3}\)), the mass-radius (\(M - b\)) relationship and the radius-central density relationship (\(b - \rho (0)\)) of the compact stellar object are analyzed for this model. Additionally, comparing the results with a slow rotating configuration, we have also discussed moment of inertia and the time period using Bejger-Haensel idea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Buchdahl, H.A.: Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  2. Andreasson, H.: J. Differ. Equ. 245, 2243 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. Stelea, C., Dariescu, M.A., Dariescu, C.: Phys. Rev. D 98, 124022 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  4. Andreasson, H.: Commun. Math. Phys. 288, 715 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Mak, M.K., Dobson, P.N., Harko, T.: Euro. Phys. Lett. 55, 310 (2001)

    Article  ADS  Google Scholar 

  6. Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115, 395 (1998)

    Article  ADS  Google Scholar 

  7. Singh, K.N., Pant, N.: Ind. J. Phys. 90, 843 (2016)

    Article  Google Scholar 

  8. Singh, K.N., Pant, N., Govender, M.: Ind. J. Phys. 90, 1215 (2016)

    Article  Google Scholar 

  9. Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 332, 481 (2011)

    Article  ADS  Google Scholar 

  10. Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 332, 155 (2011)

    Article  ADS  Google Scholar 

  11. Maharaj, S.D., Takisa, P.M.: Gen. Relativ. Gravit. 44, 1419 (2012)

    Article  ADS  Google Scholar 

  12. Maharaj, S.D., Sunzu, J.M., Ray, S.: Eur. Phys. J. Plus 129, 3 (2014)

    Article  Google Scholar 

  13. Bowers, R.L., Liang, E.P.T.: Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  14. Herrera, L., Santos, N.O.: Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  15. Letelier, P.S.: Phys. Rev. D 22, 807 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kippenhahn, R., Weigert, A.: Stellar Structure and Evolution. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  17. Sokolov, A.I.: JETP 79, 1137 (1980)

    Google Scholar 

  18. Sawyer, R.F.: Phys. Rev. Lett. 29, 382 (1972)

    Article  ADS  Google Scholar 

  19. Weber, F.: Pulsars as Astrophysical Observatories for Nuclear and Particle Physics. IOP Publishing, Bristol (1999)

    Google Scholar 

  20. Usov, V.V.: Phys. Rev. D 70, 067301 (2004)

    Article  ADS  Google Scholar 

  21. Folomeev, V.: Phys. Rev. D 97, 124009 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Chaichian, M., Masood, S.S., Montonen, C., Perez Martinez, A., Perez Rojas, H.: Phys. Rev. Lett. 84, 5261 (2000)

    Article  ADS  Google Scholar 

  23. Perez Martinez, A., Perez Rojas, H., Mosquera Cuesta, H.: Int. J Mod. Phys. D 17, 2107 (2008)

    Article  ADS  Google Scholar 

  24. Ferrer, E.J., de la Incera, V., Keith, J.P., Portillo, I., Springsteen, P.L.: Phys. Rev. C 82, 065802 (2010)

    Article  ADS  Google Scholar 

  25. Heintzmann, H., Hillebrandt, W.: Neutron stars with an anisotropic equation of state: mass, redshift and stability. Astrophysics 38, 51 (1975)

    Google Scholar 

  26. Herrera, L., Santos, N.O.: Mon. Not. R. Astron. Soc. 287, 161 (1997)

    Article  ADS  Google Scholar 

  27. Bayin, S.S.: Phys. Rev. D 26, 1262 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  28. Bondi, H.: Mon. Not. R. Astron. Soc. 259, 365 (1992)

    Article  ADS  Google Scholar 

  29. Horvat, D., Ilijic, S., Marunovic, A.: Class. Quant. Gravit. 28, 025009 (2011)

    Article  ADS  Google Scholar 

  30. Herrera, L., Barreto, W.: Phys. Rev. D 88, 084022 (2013)

    Article  ADS  Google Scholar 

  31. Herrera, L.: Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  32. Abreu, H., Hernandez, H., Nunez, L.A.: Class. Quan. Gravit. 24, 4631 (2007)

    Article  ADS  Google Scholar 

  33. DiPrisco, A., Fuenmayor, E., Herrera, L., Varela, V.: Phys. Lett. A 195, 23 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  34. Singh, K.N., et al.: Phys. Rev. D 100, 084023 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. Bhar, P., et al.: Eur. Phys. J. C 79, 922 (2019)

    Article  ADS  Google Scholar 

  36. Maurya, S.K., et al.: Phys. Rev. D 100, 044014 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  37. Deb, D., et al.: Phys. Rev. D 97, 084026 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  38. Herrera, L., Jimenez, J., Leal, L., Ponce de Leon, J.: J. Math. Phys. 25, 3274 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  39. Herrera, L., Ponce de Leon, J.: J. Math. Phys. 26, 2302 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  40. Singh, K.N., Bhar, P., Rahaman, F., Pant, N.: J. Phys. Commun. 2, 015002 (2018)

    Article  Google Scholar 

  41. Rahaman, F., Maharaj, S.D., Sardar, I.H., Chakraborty, K.: Mod. Phys. Lett. A 32, 1750053 (2017)

    Article  ADS  Google Scholar 

  42. Singh, et al.: Heliyon 5, e01929 (2019)

  43. Esculpi, M., Aloma, E.: Eur. Phys. J. C 67, 521 (2010)

    Article  ADS  Google Scholar 

  44. Das, S., Rahaman, F., Baskey, L.: Eur. Phys. J. C 79, 853 (2019)

    Article  ADS  Google Scholar 

  45. Gokhroo, M.K., Mehra, A.L.: Gen. Rel. Gravit. 26, 75 (1994)

    Article  ADS  Google Scholar 

  46. Maurya, S.K., Gupta, Y.K., Jasim, M.K.: Rep. Math. Phys. 76, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  47. Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 344, 243 (2013)

    Article  ADS  Google Scholar 

  48. Durgapal, M.C.: J. Phys. A 15, 2637 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  49. Durgapal, M.C., Pande, A.K., Phuloria, R.S.: Astrophys. Space Sci. 102, 1 (1984)

    Article  Google Scholar 

  50. Maharaj, S.D., Sunzu, J.M., Ray, S.: Eur. Phys. J. Plus 129, 3 (2014)

    Article  Google Scholar 

  51. Sunzu, J.M., Maharaj, S.D., Ray, S.: Astrophys. Space Sci. 352, 719 (2014)

    Article  ADS  Google Scholar 

  52. Sunzu, J.M., Maharaj, S.D., Ray, S.: Astrophys. Space Sci. 354, 517 (2014)

    Article  ADS  Google Scholar 

  53. Sunzu, J.M., Mathias, A.K., Maharaj, S.D.: J. Astrophys. Astr. 40, 8 (2019)

    Article  ADS  Google Scholar 

  54. Ivanov, B.V.: Phys. Rev. D 65, 104011 (2002)

    Article  ADS  Google Scholar 

  55. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spcaetime. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  56. Schwarzschild, K.: Sitz. Deut. Akad. Wiss. Berlin Kl. Math. Phys. 1916, 189 (1916)

    Google Scholar 

  57. Chan, R., Herrera, L., Santos, N.O.: Mon. Not. R. Astron. Soc. 267, 637 (1994)

    Article  ADS  Google Scholar 

  58. Misner, C.W., Sharp, D.H.: Phys. Rev. B 136, 571 (1964)

    Article  ADS  Google Scholar 

  59. Maurya, S.K., Maharaj, S.D., Kumar, J., Prasad, A.K.: Gen. Relativ. Gravit. 51, 86 (2019)

    Article  ADS  Google Scholar 

  60. Rahaman, F., Ray, S., Jafry, A.K., Chakraborty, K.: Phys. Rev. D 82, 104055 (2010)

    Article  ADS  Google Scholar 

  61. Dey, M., Bombacci, I., Dey, J., Ray, S., Samanta, B.C.: Phys. Lett. B 438, 123 (1998)

    Article  ADS  Google Scholar 

  62. Gondek-Rosinska, D., Bulik, T., Zdunik, L., Gourgoulhon, E., Ray, S., Dey, J., Dey, M.: Astron. Astrophys. 363, 1005 (2000)

    ADS  Google Scholar 

  63. Haensel, P., Zdunik, J.L.: Nature 340, 617 (1989)

    Article  ADS  Google Scholar 

  64. Frieman, J.A., Olinto, A.: Nature 341, 633 (1989)

    Article  ADS  Google Scholar 

  65. Prakash, M., Baron, E.: Phys. Lett. B 243, 175 (1990)

    Article  ADS  Google Scholar 

  66. Harko, T., Cheng, K.S.: Astron. Astrophys. 385, 1005 (2002)

    Article  Google Scholar 

  67. Maurya, S.K., Banerji, A., Jasim, M.K., Kumar, J., Prasad, A.K., Pradhan, A.: Phys. Rev. D 99, 044029 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  68. Chanda, A., Dey, S., Paul, B.C.: Eur. Phys. J C 79, 502 (2019)

    Article  ADS  Google Scholar 

  69. Tolman, R.C.: Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  70. Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  71. Chan, R., Herrera, L., Santos, N.O.: Mon. Not. R. Astron. Soc. 265, 533 (1993)

    Article  ADS  Google Scholar 

  72. Bondi, H.: Proc. R. Soc. Lond. A 281, 39 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  73. Sharma, R., Das, S., Thirukkanesh, S.: Astrophys. Space Sci. 362, 232 (2017)

    Article  ADS  Google Scholar 

  74. Rhoades, C.E., Ruffini, R.: Phys. Rev. Lett. 32, 324 (1974)

    Article  ADS  Google Scholar 

  75. Shapiro, S.L., Teukolsky, S.A.: Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects. John Wiley and Sons Inc, New Jersey (1983)

    Book  Google Scholar 

  76. Bhar, P.: Eur. Phys. J. C. 79, 138 (2019)

    Article  ADS  Google Scholar 

  77. Singh, K.N., Pant, N., Govender, M.: Eur. Phys. J. C. 77, 100 (2017)

    Article  ADS  Google Scholar 

  78. Gedela, S., Pant, N., Upreti, J., Pant, R.P.: Eur. Phys. J. C. 79, 566 (2019)

    Article  ADS  Google Scholar 

  79. Mak, M.K., Harko, T.: Proc. R. Soc. A 459, 393 (2003)

    Article  ADS  Google Scholar 

  80. Carvalho, G.A., Marinho, R.M., Malheiro, M.: J. Phys. Conf. Ser. 630, 012058 (2015)

    Article  Google Scholar 

  81. Buchdahl, H.A.: Astrophys. J. 146, 275 (1966)

    Article  ADS  Google Scholar 

  82. Harrison, B.K., Thorne, K.S., Wakano, M.: Wheeler Gravitational Theory and Gravitational Collapse. University of Chicago Press, Chicago (1965)

    Google Scholar 

  83. Zeldovich, Y.B., Novikov, I.D.: Relativistic Astrophysics Stars and Relativity, vol. 1. University of Chicago Press, Chicago (1971)

    Google Scholar 

  84. Bejger, M., Haensel, P.: Astron. Astrophys. 396, 917 (2002)

    Article  ADS  Google Scholar 

  85. Bejger, M., Bulik, T., Haensel, P.: Mon. Not. R. Astron. Soc. 364, 635 (2005)

    Article  ADS  Google Scholar 

  86. Haensel, P., Salgado, M., Bonazzola, S.: Astron. Astrophys. 296, 745751 (1995)

    Google Scholar 

  87. Herrera, L., Ospino, J., Di Prisco, A.: Phys. Rev. D 77, 027502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  88. Demorest, P., Pennucci, T., Ransom, S., Roberts, M., Hessels, J.W.T.: Nature 467, 7319 (2010)

    Article  Google Scholar 

  89. Deb, D., Chowdhury, S. Roy, Guha, B.K., Ray, S.: arXiv:1611.02253v1 (2016)

  90. Abbott, R., et al.: Phys. Rev. Lett. 121, 161101 (2018)

    Article  ADS  Google Scholar 

  91. Gangopadhyay, T., Ray, S., Li, X.-D., Dey, J., Dey, M.: Mon. Not. R. Astron. Soc. 431, 3216 (2013)

    Article  ADS  Google Scholar 

  92. Özel, F., et al.: ApJ 820(1), 28 (2016)

    Article  ADS  Google Scholar 

  93. Lindblom, L.: Astrophys. J 278, 364 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S D and F R gratefully acknowledges support from the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India, where part of this work was carried out under its Visiting Research Associateship Programme. This work is a part of the project submitted by FR in SERB under MATRICS. We are also thankful to the referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farook Rahaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Singh, K.N., Baskey, L. et al. Modeling of compact stars: an anisotropic approach. Gen Relativ Gravit 53, 25 (2021). https://doi.org/10.1007/s10714-021-02792-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02792-5

Keywords

Navigation