Skip to main content
Log in

Analysis of Global and Local Hydrodynamic Instabilities on a High-Speed Jet Diffusion Flame via Time-Resolved 3D Measurements

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Measurements of 3D flame edge dynamics were made on a high-speed jet diffusion flame to assess the global/local hydrodynamic instability. The flame was generated by issuing high-speed ethylene (Uj = 170 m/s) into a low-speed vitiated hot coflow (Uc = 1.5 m/s), resulting in a hydrodynamic shear layer instability at the interface between combustion products and ambient flow. The measurements used a high-speed camera combined with nine-headed fiber endoscopes to simultaneously collect both the soot radiation and chemiluminescence projections of the flame from nine views, based on which 3D flame edges were obtained via computed tomography at 15 kHz. The measurements clearly capture the time-varying, 3D instantaneous flame edge structures with fine-scale corrugations, enabling the observation of small-scale vortices' evolution. The flame edge deformations induced by those vortices were calculated globally and locally to infer the relationship between global and local flame edge oscillations. Results show that various local oscillation frequencies exist at different locations along the flow direction for such a highly sheared flame. They are dominated by the periodical formation and motion of various localized, small-scale vortices. The local oscillations are much severer than the global oscillation, indicating a self-suppression of the instabilities between these local oscillations. The suppression mechanism is attributed to the constructive and destructive interference behavior of the local disturbances. The global oscillation of the flame edge turns out to be the linear superposition of local oscillations at different locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of Data and Materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alabdeli, Y., Masri, A., Marquez, G., Starner, S.: Time-varying behaviour of turbulent swirling nonpremixed flames. Combust. Flame 146, 200–214 (2006)

    Article  Google Scholar 

  • Allison, P.M., Chen, Y., Ihme, M., Driscoll, J.F.: Coupling of flame geometry and combustion instabilities based on kilohertz formaldehyde PLIF measurements. Proc. Combust. Inst. 35, 3255–3262 (2015)

    Article  Google Scholar 

  • Allison, P.M., Frederickson, K., Kirik, J.W., Rockwell, R.D., Lempert, W.R., Sutton, J.A.: Investigation of supersonic combustion dynamics via 50 kHz CH* chemiluminescence imaging. Proc. Combust. Inst. 36, 2849–2856 (2017)

    Article  Google Scholar 

  • Anikin, N., Suntz, R., Bockhorn, H.: Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames. Appl. Phys. B 100, 675–694 (2010)

    Article  Google Scholar 

  • Candel, S., Durox, D., Schuller, T., Bourgouin, J.-F., Moeck, J.P.: Dynamics of swirling flames. Annu. Rev. Fluid Mech. 46, 147–173 (2014)

    Article  MathSciNet  Google Scholar 

  • Cho, K.Y., Satija, A., Pourpoint, T.L., Son, S.F., Lucht, R.P.: High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion. Appl. Opt. 53, 316–326 (2014)

    Article  Google Scholar 

  • Delichatsios, M.A.: Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships jet diffusion flames and flame height relationships. Combust. Flame 92, 349–364 (1993)

    Article  Google Scholar 

  • Doleiden, D., Culler, W., Tyagi, A., Peluso, S., O'Connor, J.: Flame edge dynamics and interaction in a multinozzle can combustor with fuel staging, J. Eng. Gas. Turbines Power-Trans. ASME 141 (2019)

  • Floyd, J., Lindstedt, P., Kempf, A.: Computed Tomography of Chemiluminescence: A 3D Time Resolved Sensor for Turbulent Combustion. Imperial College, London (2009)

    Google Scholar 

  • Floyd, J., Geipel, P., Kempf, A.M.: Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame. Combust. Flame 158, 376–391 (2011)

    Article  Google Scholar 

  • Gatti, M., Gaudron, R., Mirat, C., Zimmer, L., Schuller, T.: Impact of swirl and bluff-body on the transfer function of premixed flames. Proc. Combust. Inst. 37, 5197–5204 (2019)

    Article  Google Scholar 

  • Gaudron, R., Gatti, M., Mirat, C., Schuller, T.: Flame describing functions of a confined premixed swirled combustor with upstream and downstream forcing. J. Eng. Gas. Turbines Power-Trans. ASME 141 (2019)

  • Halls, B.R., Hsu, P.S., Jiang, N., Legge, E.S., Felver, J.J., Slipchenko, M.N., Roy, S., Meyer, T.R., Gord, J.R.: kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator. Optica 4, 897–902 (2017)

    Article  Google Scholar 

  • Huang, J., Liu, H., Cai, W.: Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning. J. Fluid Mech. 875(R2), 1–12 (2019)

    MathSciNet  MATH  Google Scholar 

  • Ishino, Y., Hayashi, N., Bt Abd Razak, I.F., Kato, T., Kurimoto, Y., Saiki, Y.: 3D-CT(Computer Tomography) measurement of an instantaneous density distribution of turbulent flames with a multi-directional quantitative schlieren camera (reconstructions of high-speed premixed burner flames with different flow velocities). Flow Turbul. Combust. 96, 819–835 (2015)

  • Kak, A.C., Slaney, M., Wang, G.: Principles of computerized tomographic imaging. Med. Phys. 29, 107 (2002)

    Article  Google Scholar 

  • Katta, V.R., Roquemore, W.M., Menon, A., Lee, S.-Y., Santoro, R.J., Litzinger, T.A.: Impact of soot on flame flicker. Proc. Combust. Inst. 32, 1343–1350 (2009)

    Article  Google Scholar 

  • Kolhe, P.S., Agrawal, A.K.: Role of buoyancy on instabilities and structure of transitional gas jet diffusion flames. Flow Turbul. Combust. 79, 343–360 (2007)

    Article  Google Scholar 

  • Lee, J.G., Santavicca, D.A.: Experimental diagnostics for the study of combustion instabilities in lean premixed combustors. J. Propul. Power 19, 735–750 (2003)

    Article  Google Scholar 

  • Lei, Q., Wu, Y., Xiao, H., Ma, L.: Analysis of four-dimensional Mie imaging using fiber-based endoscopes. Appl. Opt. 53, 6389–6398 (2014)

    Article  Google Scholar 

  • Li, X., Ma, L.: Capabilities and limitations of 3D flame measurements based on computed tomography of chemiluminescence. Combust. Flame 162, 642–651 (2015)

    Article  Google Scholar 

  • Li, T., Pareja, J., Fuest, F., Schütte, M., Zhou, Y., Dreizler, A., Böhm, B.: Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames. Meas. Sci. Technol. 29, 015206 (2017)

    Article  Google Scholar 

  • Liu, B., He, G., Qin, F., Lei, Q., An, J., Huang, Z.: Flame stabilization of supersonic ethylene jet in fuel-rich hot coflow. Combust. Flame 204, 142–151 (2019a)

    Article  Google Scholar 

  • Liu, N., Lei, Q., Wu, Y., Ma, L.: 3D tomography reconstruction improved by integrating view registration. Appl. Opt. 58, 2596–2604 (2019b)

    Article  Google Scholar 

  • Long, E.J., Hargrave, G.K.: Experimental measurement of local burning velocity within a rotating flow. Flow Turbul. Combust. 86, 455–476 (2011)

    Article  Google Scholar 

  • Ma, L., Lei, Q., Wu, Y., Xu, W., Ombrello, T.M., Carter, C.D.: From ignition to stable combustion in a cavity flameholder studied via 3D tomographic chemiluminescence at 20 kHz. Combust. Flame 165, 1–10 (2016)

    Article  Google Scholar 

  • Ma, L., Lei, Q., Ikeda, J., Xu, W., Wu, Y., Carter, C.D.: Single-shot 3D flame diagnostic based on volumetric laser induced fluorescence (VLIF). Proc. Combust. Inst. 36, 4575–4583 (2017)

    Article  Google Scholar 

  • Mishra, D., Longtin, J.P., Singh, R.P., Prasad, V.: Performance evaluation of iterative tomography algorithms for incomplete projection data. Appl. Opt. 43, 1522–1532 (2004)

    Article  Google Scholar 

  • Moeck, J.P., Bourgouin, J.-F., Durox, D., Schuller, T., Candel, S.: Tomographic reconstruction of heat release rate perturbations induced by helical modes in turbulent swirl flames. Exp. Fluids 54, 1498 (2013)

    Article  Google Scholar 

  • Mohri, K., Gors, S., Scholer, J., Rittler, A., Dreier, T., Schulz, C., Kempf, A.: Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence. Appl. Opt. 56, 7385–7395 (2017)

    Article  Google Scholar 

  • Nichols, J.W., Schmid, P.J.: The effect of a lifted flame on the stability of round fuel jets. J. Fluid Mech. 609, 275–284 (2008)

    Article  Google Scholar 

  • Nicolas, F., Todoroff, V., Plyer, A., Le Besnerais, G., Donjat, D., Micheli, F., Champagnat, F., Cornic, P., Le Sant, Y.: A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements. Exp. Fluids 57 (2015)

  • Pareja, J., Johchi, A., Li, T., Dreizler, A., Böhm, B.: A study of the spatial and temporal evolution of auto-ignition kernels using time-resolved tomographic OH-LIF. Proc. Combust. Inst. 37, 1321–1328 (2019)

    Article  Google Scholar 

  • Qadri, U.A., Chandler, G.J., Juniper, M.P.: Self-sustained hydrodynamic oscillations in lifted jet diffusion flames: origin and control. J. Fluid Mech. 775, 201–222 (2015)

    Article  MathSciNet  Google Scholar 

  • Schlimpert, S., Feldhusen, A., Grimmen, J.H., Roidl, B., Meinke, M., Schröder, W.: Hydrodynamic instability and shear layer effects in turbulent premixed combustion, Phys. Fluids 28 (2016)

  • Shanbhogue, S., Shin, D.-H., Hemchandra, S., Plaks, D., Lieuwen, T.: Flame sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing. Proc. Combust. Inst. 32, 1787–1794 (2009a)

    Article  Google Scholar 

  • Shanbhogue, S.J., Seelhorst, M., Lieuwen, T.: Vortex phase-jitter in acoustically excited bluff body flames. Int. J. Spray Combust. Dyn. 1, 365–388 (2009b)

    Article  Google Scholar 

  • Shin, D.-H., Plaks, D.V., Lieuwen, T., Mondragon, U.M., Brown, C.T., McDonell, V.G.: Dynamics of a longitudinally forced, bluff body stabilized flame. J. Propul. Power 27, 105–116 (2011)

    Article  Google Scholar 

  • Steinberg, A.M., Boxx, I., Stöhr, M., Carter, C.D., Meier, W.: Flow–flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor. Combust. Flame 157, 2250–2266 (2010)

    Article  Google Scholar 

  • Upton, T.D., Verhoeven, D.D., Hudgins, D.E.: High-resolution computed tomography of a turbulent reacting flow. Exp. Fluids 50, 125–134 (2011)

    Article  Google Scholar 

  • Weinkauff, J., Greifenstein, M., Dreizler, A., Böhm, B.: Time resolved three-dimensional flamebase imaging of a lifted jet flame by laser scanning. Meas. Sci. Technol. 26, 105201 (2015)

    Article  Google Scholar 

  • Wiseman, S.M., Brear, M.J., Gordon, R.L., Marusic, I.: Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames. Combust. Flame 183, 1–14 (2017)

    Article  Google Scholar 

  • Worth, N.A., Dawson, J.R.: Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames. Meas. Sci. Technol. 24, 024013 (2012)

    Article  Google Scholar 

  • Xia, Y., Lei, Q., Chi, Y., Fan, W., Tao, B.: An improved camera calibration method for 3D flame measurements based on tomographic reconstruction, ASPACC 2019. Fukuoka, Japan (2019)

    Google Scholar 

  • Zhang, H., Mastorakos, E.: Prediction of global extinction conditions and dynamics in swirling non-premixed flames using LES/CMC modelling. Flow Turbul. Combust. 96, 863–889 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study is funded by the National Natural Science Foundation of China under Contractor Nos. 91741108 and 51876179.

Funding

This study is funded by the National Natural Science Foundation of China under Contractor Nos. 91741108 and 51876179.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Qingchun Lei, Rongxiao Dong, and Wei Fan contributed to the conception of the study. Rongxiao Dong, Yeqing Chi, Erzhuang Song performed the experiments. The data analysis and manuscript were completed by Rongxiao Dong and Qingchun Lei. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qingchun Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (MP4 1945 KB)

Supplementary file 2 (MP4 2734 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, R., Lei, Q., Chi, Y. et al. Analysis of Global and Local Hydrodynamic Instabilities on a High-Speed Jet Diffusion Flame via Time-Resolved 3D Measurements. Flow Turbulence Combust 107, 759–780 (2021). https://doi.org/10.1007/s10494-021-00251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00251-4

Keywords

Navigation