Skip to main content
Log in

A method for aligning a femtosecond multi-petawatt coherent beam combining system

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This work proposes a method for aligning a femtosecond multi-petawatt coherent beam combining system under quasi-static conditions. This method does not depend on the details of the laser system, and only exploits the information of the fluence distribution in the far field as the feedback for the control of a deformable mirror and a reflective mirror in each optical path to optimize the system in order to achieve coherent combining efficiency as high as possible. The full workflow consists of 8 steps among which the nontrivial ones are demonstrated through numerical simulations. This work provides a framework to manage the large-scale coherent combining laser systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.N. Danson et al., Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 7(54), 1–54 (2019)

    Google Scholar 

  2. M. Perry, D. Pennington, B. Stuart, G. Tietbohl, J. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. Powell, M. Vergino, V. Yanovsky, Petawatt laser pulses. Opt. Lett. 24(3), 160–162 (1999)

    Article  ADS  Google Scholar 

  3. Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, Z. Xu, High-contrast 2.0 Petawatt Ti: sapphire laser system. Opt. Express 21(24), 29231–29239 (2013)

    Article  ADS  Google Scholar 

  4. X. Zeng, K. Zhou, Y. Zuo, Q. Zhu, J. Su, X. Wang, X. Wang, X. Huang, X. Jiang, D. Jiang, Y. Guo, N. Xie, S. Zhou, Z. Wu, J. Mu, H. Peng, F. Jing, Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification. Opt. Lett. 42(10), 2014–2017 (2017)

    Article  ADS  Google Scholar 

  5. J. Sung, H. Lee, J. Yoo, J. Yoon, C. Lee, J. Yang, Y. Son, Y. Jang, S. Lee, C. Nam, 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Lett. 42(11), 2058–2061 (2017)

    Article  ADS  Google Scholar 

  6. H. Kiriyama, A. Pirozhkov, M. Nishiuchi, Y. Fukuda, K. Ogura, A. Sagisaka, Y. Miyasaka, M. Mori, H. Sakaki, N. Dover, K. Kondo, J. Koga, T. Esirkepov, M. Kando, K. Kondo, High-contrast high-intensity repetitive petawatt laser. Opt. Lett. 43(11), 2595–2598 (2018)

    Article  ADS  Google Scholar 

  7. J. Zhu, X. Xie, M. Sun, J. Kang, Q. Yang, A. Guo, H. Zhu, P. Zhu, Q. Gao, X. Liang, Z. Cui, S. Yang, C. Zhang, Z. Lin, Analysis and construction status of SG II-5PW laser facility. High Power Laser Sci. Eng. 6(02), 115–127 (2018)

    Google Scholar 

  8. T. Tajima, J. Dawson, Laser-electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)

    Article  ADS  Google Scholar 

  9. M. Roth, T. Cowan, M. Key, S. Hatchett, C. Brown, W. Fountain, J. Johnson, D. Pennington, R. Snavely, S. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. Bulanov, E. Campbell, M. Perry, H. Powell, Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436–439 (2001)

    Article  ADS  Google Scholar 

  10. M. Dunne, A high-power laser fusion facility for Europe. Nat. Phys. 2, 2–5 (2006)

    Article  Google Scholar 

  11. B. Shen, Z. Bu, J. Xu, T. Xu, L. Ji, R. Li, Z. Xu, Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam. Plasma Phys. Control Fusion 60, 044002 (2018)

    Article  ADS  Google Scholar 

  12. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56(3), 219–221 (1985)

    Article  ADS  Google Scholar 

  13. A. Dubietis, G. Jonusauskas, A. Piskarskas, Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 88(4), 437–440 (1992)

    Article  ADS  Google Scholar 

  14. H. Nguyen, J. Britten, T. Carlson, J. Nissen, L. Summers, C. Hoaglan, M. Aasen, J. Peterson, I. Jovanovic, Gratings for high-energy petawatt lasers. Proc. SPIE 5991, 59911M (2005)

    Article  ADS  Google Scholar 

  15. Britten J, Nguyen H, Jones LII, Carlson T, Hoaglan LC, SM Aasen, Rigatti A, Oliver J (2004) First demonstration of a meter-scale multilayer dielectric reflection grating for high-energy petawatt-class lasers, Lawrence Livermore National Laboratory, UCRL-JRNL-205887

  16. T. Zhang, M. Yonemura, Y. Kato, An array-grating compressor for high-power chirped-pulse amplification lasers. Opt. Commun. 145(1), 367–376 (1998)

    Article  ADS  Google Scholar 

  17. T. Kessler, J. Bunkenburg, H. Huang, A. Kozlov, D. Meyerhofer, Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers. Opt. Lett. 29(6), 635–637 (2004)

    Article  ADS  Google Scholar 

  18. M. Hornung, R. Bodefeld, A. Kessler, J. Hein, M. Kaluza, Spectrally resolved and phase-sensitive far-field measurement for the coherent addition of laser pulses in a tiled grating compressor. Opt. Lett. 35(12), 2073–2075 (2010)

    Article  ADS  Google Scholar 

  19. H. Habara, G. Xu, T. Jitsuno, R. Kodama, K. Suzuki, K. Sawai, K. Kondo, N. Miyanaga, K. Tanaka, K. Mima, M. Rushford, J. Britten, C. Barty, Pulse compression and beam focusing with segmented diffraction gratings in a high-power chirped-pulse amplification glass laser system. Opt. Lett. 35(11), 1783–1785 (2010)

    Article  ADS  Google Scholar 

  20. N. Blanchot, E. Bar, G. Behar, C. Bellet, D. Bigourd, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, O. Flour, O. Hartmann, L. Hilsz, E. Hugonnot, E. Lavastre, J. Luce, E. Mazataud, J. Neauport, S. Noailles, B. Remy, F. Sautarel, M. Sautet, C. Rouyer, Experimental demonstration of a synthetic aperture compression scheme for multi-Petawatt high-energy lasers. Opt. Express 18(10), 10088–10097 (2010)

    Article  ADS  Google Scholar 

  21. J. Qiao, A. Kalb, T. Nguyen, J. Bunkenburg, D. Canning, J. Kelly, Demonstration of large-aperture tiled-grating compressors for high-energy, petawatt-class, chirped-pulse amplification systems. Opt. Lett. 33(15), 1684–1686 (2008)

    Article  ADS  Google Scholar 

  22. A. Cotel, C. Crotti, P. Audebert, C. Le Bris, C. Le Blanc, Tiled-grating compression of multiterawatt laser pulses. Opt. Lett. 32(12), 1749–1751 (2007)

    Article  ADS  Google Scholar 

  23. Z. Li, G. Xu, T. Wang, Y. Dai, Object-image-grating self-tiling to achieve and maintain stable, near-ideal tiled grating conditions. Opt. Lett. 35(13), 2206–2208 (2010)

    Article  ADS  Google Scholar 

  24. Exawatt Center for Extreme Light Studies (XCELS), Project Summary, http://www.xcels.iapras.ru/img/site‑XCELS.pdf.

  25. C. Barty, M. Key, J. Britten, R. Beach, G. Beer, C. Brown, S. Bryan, J. Caird, T. Carlson, J. Crane, J. Dawson, A. Erlandson, D. Fittinghoff, M. Hermann, C. Hoaglan, A. Iyer, L. Jones II., I. Jovanovic, A. Komashko, O. Landen, Z. Liao, W. Molander, S. Mitchell, E. Moses, N. Nielsen, H.-H. Nguyen, J. Nissen, S. Payne, D. Pennington, L. Risinger, M. Rushford, K. Skulina, M. Spaeth, B. Stuart, G. Tietbohl, B. Wattellier, An overview of LLNL high-energy short pulse technology for advanced radiography of laser fusion experiments. Nucl. Fusion 44, S266 (2004)

    Article  Google Scholar 

  26. Izawa Y (2005) Overview of FIREX program. In: Proceedings of 5th US-Japan workshop on laser IFE

  27. B. Rus, P. Bakule, D. Kramer, G. Korn, J. Green, J. Novak, M. Fibrich, F. Batysta, J. Thoma, J. Naylon, ELI-Beamlines laser systems: status and design options. Proc. SPIE 8780, 87801T (2013)

    Article  Google Scholar 

  28. T.Y. Fan, Laser beam combining for high-power, high radiance sources. IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005)

    Article  ADS  Google Scholar 

  29. A. Brignon, Coherent Laser Beam Combining (Wiley-VCH, Verlag GmbH, 2013).

    Book  Google Scholar 

  30. M. Muller, C. Aleshire, A. Klenke, E. Haddad, F. Legare, A. Tunnermann, J. Limpert, 10.4 kW coherently combined ultrafast fiber laser. Opt. Lett. 45(11), 3083–3086 (2020)

    Article  ADS  Google Scholar 

  31. V. Leshchenko, V. Trunov, S. Frolov, E. Pestryakov, V. Vasiliev, N. Kvashnin, S. Bagayev, Coherent combining of multimillijoule parametric-amplified femtosecond pulses. Laser Phys. Lett. 11, 095301 (2014)

    Article  ADS  Google Scholar 

  32. S. Bagayev, V. Leshchenko, V. Trunov, E. Pestryakov, S. Frolov, Coherent combining of femtosecond pulses parametrically amplified in BBO crystals. Opt. Lett. 39(6), 1517–1519 (2014)

    Article  ADS  Google Scholar 

  33. V. Leshchenko, V. Vasiliev, N. Kvashnin, E. Pestryakov, Coherent combining of relativistic-intensity femtosecond laser pulses. Appl. Phys. B 118, 511–516 (2015)

    Article  ADS  Google Scholar 

  34. C. Peng, X. Liang, R. Liu, W. Li, R. Li, High-precision active synchronization control of high-power, tiled-aperture coherent beam combining. Opt. Lett. 42(19), 3960–3963 (2017)

    Article  ADS  Google Scholar 

  35. C. Peng, X. Liang, R. Liu, W. Li, R. Li, Two-beam coherent combining based on Ti: sapphire chirped-pulse amplification at repetition of 1 Hz. Opt. Lett. 44(17), 4379–4382 (2019)

    Article  ADS  Google Scholar 

  36. D. Acton, P. Atcheson, M. Cermak, L. Kingsbury, F. Shi, D. Redding, James webb space telescope wavefront sensing and control algorithms. Proc. SPIE 5487, 887–896 (2004)

    Article  ADS  Google Scholar 

  37. A. Klenke, E. Seise, J. Limpert, A. Tunnermann, Basic considerations on coherent combining of ultrashort laser pulses. Opt. Express 19(25), 25379–25387 (2011)

    Article  ADS  Google Scholar 

  38. Y. Gao, W. Ma, B. Zhu, D. Liu, Z. Cao, J. Zhu, Y. Dai, Phase control requirements of high intensity laser beam combining. Appl. Opt. 51(15), 2941–2950 (2012)

    Article  ADS  Google Scholar 

  39. Z. Zhao, Y. Gao, Y. Cui, Z. Xu, N. An, D. Liu, T. Wang, D. Rao, M. Chen, W. Feng, L. Ji, Z. Cao, X. Yang, W. Ma, Investigation of phase effects of coherent beam combining for large-aperture ultrashort ultrahigh intensity laser systems. Appl. Opt. 54(33), 9939–9948 (2015)

    Article  ADS  Google Scholar 

  40. V. Leshchenko, Coherent combining efficiency in tiled and filled aperture approaches. Opt. Express 23(12), 15944–15970 (2015)

    Article  ADS  Google Scholar 

  41. S. Bagayev, V. Trunov, E. Pestryakov, S. Frolov, V. Leshchenko, A. Kokh, V. Vasiliev, Super-intense femtosecond multichannel laser system with coherent beam combining. Laser Phys. 24, 074016 (2014)

    Article  ADS  Google Scholar 

  42. D. Wang, Y. Leng, Simulating a four-channel coherent beam combination system for femtosecond multi-petawatt lasers. Opt. Express 27(25), 36137–36153 (2019)

    Article  ADS  Google Scholar 

  43. V. Mahajan, G. Dai, Orthonormal polynomials in wavefront analysis: analytical solution. J. Opt. Soc. Am. A 24(9), 2994–3016 (2007)

    Article  ADS  Google Scholar 

  44. M.A. Vorontsov, V.P. Sivokon, Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction. J. Opt. Soc. Am. A 15(10), 2745–2758 (1998)

    Article  ADS  Google Scholar 

  45. S. Zommer, E. Ribak, S. Lipson, J. Adler, Simulated annealing in ocular adaptive optics. Opt. Lett. 31(7), 939–941 (2006)

    Article  ADS  Google Scholar 

  46. H. Yang, X. Li, Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor. Opt. Laser Technol. 43, 630–635 (2011)

    Article  ADS  Google Scholar 

  47. Z. Cheng, J. Yang, L.V. Wang, Intelligently optimized digital optical phase conjugation with particle swarm optimization. Opt. Lett. 45(2), 431–434 (2020)

    Article  ADS  Google Scholar 

  48. S. Paine, J.R. Fienup, Machine learning for improved image-based wavefront sensing. Opt. Lett. 43(6), 1235–1238 (2018)

    Article  ADS  Google Scholar 

  49. J. Qiao, J. Papa, X. Liu, Spatio-temporal modeling and optimization of a deformable-grating compressor for short high energy laser pulses. Opt. Express 23(20), 25923–25934 (2015)

    Article  ADS  Google Scholar 

  50. Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, N. Miyanaga, Degradation of femtosecond petawatt lasers: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings. Appl. Phys. Express 10, 102702 (2017)

    Article  ADS  Google Scholar 

  51. Z. Li, J. Kawanaka, Complex spatiotemporal coupling distortion pre-compensation with double-compressors for an ultra-intense femtosecond laser. Opt. Express 27(18), 25172–25186 (2019)

    Article  ADS  Google Scholar 

  52. S.-W. Bahk, J. Bromage, I.A. Begishev, C. Mileham, C. Stoeckl, M. Storm, J. Zuegel, On-shot focal-spot characterization technique using phase retrieval. Appl. Opt. 47(25), 4589–4597 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Jun Liu, Xiaoyan Liang, Yi Xu, Cheng Wang, Lianghong Yu, Chengqiang Zhao, Fenxiang Wu, Zongxin Zhang, Chun Peng, Xiong Shen, Peng Wang and Jinfeng Li for helpful discussions.

Funding

National Natural Science Foundation of China (NSFC) (61521093, 61925507, 61635012, 11604351), National Key Research and Development Program of China (2017YFE0123700), Program of Shanghai Academic/Technology Research Leader (18XD1404200), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB1603), Major Project Science and Technology Commission of Shanghai Municipality (STCSM) (2017SHZDZX02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ding Wang or Yuxin Leng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 3324 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Leng, Y. A method for aligning a femtosecond multi-petawatt coherent beam combining system. Appl. Phys. B 127, 41 (2021). https://doi.org/10.1007/s00340-021-07589-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07589-7

Navigation