Skip to main content
Log in

Testing linearity in partial functional linear quantile regression model based on regression rank scores

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

This paper investigates the hypothesis test of the parametric component in partial functional linear quantile regression model in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables. A quantile rank score test based on functional principal component analysis is developed. Under mild conditions, we establish the consistency of the proposed test statistic, and show that the proposed test can detect Pitman local alternatives converging to the null hypothesis at the usual parametric rate. A simulation study shows that the proposed test procedure has good size and power with finite sample sizes. Finally, an illustrative example is given through fitting the Berkeley growth data and testing the effect of gender on the height of kids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Cai, T., & Hall, P. (2006). Prediction in functional linear regression. The Annals of Statistics, 34(5), 2159–2179.

    Article  MathSciNet  Google Scholar 

  • Cardot, H., Crambes, C., & Sarda, P. (2005). Quantile regression when the covariates are functions. Journal of Nonparametric Statistics, 17(7), 841–856.

    Article  MathSciNet  Google Scholar 

  • Cardot, H., Ferraty, F., & Sarda, P. (2003). Spline estimators for the functional linear model. Statistica Sinica, 13(3), 571–592.

    MathSciNet  MATH  Google Scholar 

  • Chen, K., & Müller, H. G. (2012). Conditional quantile analysis when covariates are functions, with application to growth data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(1), 67–89.

    Article  MathSciNet  Google Scholar 

  • Chen, C., & Wei, Y. (2005). Computational issues for quantile regression. Sankhyā: The Indian Journal of Statistics, 67(2), 399–417.

    MathSciNet  MATH  Google Scholar 

  • Chiou, J. M., & Li, P. L. (2007). Functional clustering and identifying substructures of longitudinal data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4), 679–699.

    Article  MathSciNet  Google Scholar 

  • Crambes, C., Kneip, A., & Sarda, P. (2009). Smoothing splines estimators for functional linear regression. The Annals of Statistics, 37(1), 35–72.

    Article  MathSciNet  Google Scholar 

  • Ferraty, F., & Vieu, P. (2006). Nonparametric functional data analysis: Theory and practice. New York: Springer.

    MATH  Google Scholar 

  • Gutenbrunner, C., Jurĕcková, J., Koenker, R., & Portnoy, S. (1993). Tests of linear hypotheses based on regression rank scores. Journaltitle of Nonparametric Statistics, 2(4), 307–331.

    Article  MathSciNet  Google Scholar 

  • Hall, P., & Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression. The Annals of Statistics, 35(1), 70–91.

    Article  MathSciNet  Google Scholar 

  • Hall, P., Müller, H. G., & Wang, J. L. (2006). Properties of principal component methods for functional and longitudinal data analysis. The Annals of Statistics, 34(3), 1493–1517.

    Article  MathSciNet  Google Scholar 

  • Hall, P., Müller, H. G., & Yao, F. (2009). Estimation of functional derivatives. The Annals of Statistics, 37(6A), 3307–3329.

    Article  MathSciNet  Google Scholar 

  • He, X., & Shao, Q. M. (2000). On parameters of increasing dimensions. Journal of Multivariate Analysis, 73(1), 120–135.

    Article  MathSciNet  Google Scholar 

  • Horváth, L., & Kokoszka, P. (2012). Inference for functional data with applications. New York: Springer.

    Book  Google Scholar 

  • Kai, B., Li, R., & Zou, H. (2011). New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. The Annals of Statistics, 39, 305–332.

    Article  MathSciNet  Google Scholar 

  • Kato, K. (2012). Estimation in functional linear quantile regression. The Annals of Statistics, 40(6), 3108–3136.

    Article  MathSciNet  Google Scholar 

  • Kocherginsky, M., He, X., & Mu, Y. (2005). Practical confidence intervals for regression quantiles. Journal of Computational and Graphical Statistics, 14(1), 41–55.

    Article  MathSciNet  Google Scholar 

  • Koenker, R. (2005). Quantile regression. New York: Cambridge University Press.

    Book  Google Scholar 

  • Li, Y., & Guan, Y. (2014). Functional principal component analysis of spatiotemporal point processes with applications in disease surveillance. Journal of the American Statistical Association, 109(507), 1205–1215.

    Article  MathSciNet  Google Scholar 

  • Lu, Y., Du, J., & Sun, Z. (2014). Functional partially linear quantile regression model. Metrika, 77(3), 317–332.

    Article  MathSciNet  Google Scholar 

  • Ramsay, J. O., Bock, R. D., & Gasser, T. (1995). Comparison of height acceleration curves in the Fels, Zurich, and Berkeley growth data. Annals of Human Biology, 22(5), 413–426.

    Article  Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (2002). Applied functional data analysis: Methods and case studies. New York: Springer.

    Book  Google Scholar 

  • Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Reiss, P. T., & Ogden, R. T. (2007). Functional principal component regression and functional partial least squares. Journal of the American Statistical Association, 102(479), 984–996.

    Article  MathSciNet  Google Scholar 

  • Shin, H. (2009). Partial functional linear regression. Journal of Statistical Planning and Inference, 139(10), 3405–3418.

    Article  MathSciNet  Google Scholar 

  • Tuddenham, R., & Snyder, M. (1954). Physical growth of California boys and girls from birth to eighteen years. California Publications on Child Development, 1, 183–364.

    Google Scholar 

  • Wang, H. J., & He, X. (2007). Detecting differential expressions in GeneChip microarray studies: A quantile approach. Journal of the American Statistical Association, 102(477), 104–112.

    Article  MathSciNet  Google Scholar 

  • Wang, H. J., Zhu, Z., & Zhou, J. (2009). Quantile regression in partially linear varying coefficient models. The Annals of Statistics, 37(6), 3841–3866.

    Article  MathSciNet  Google Scholar 

  • Wu, Z., & Hitchcock, D. B. (2016). A Bayesian method for simultaneous registration and clustering of functional observations. Computational Statistics & Data Analysis, 101, 121–136.

    Article  MathSciNet  Google Scholar 

  • Yao, F., Fu, Y., & Lee, T. C. M. (2011). Functional mixture regression. Biostatistics, 12(2), 341–353.

    Article  Google Scholar 

  • Yao, F., Müller, H. G., & Wang, J. L. (2005). Functional linear regression analysis for longitudinal data. The Annals of Statistics, 33(6), 2873–2903.

    Article  MathSciNet  Google Scholar 

  • Yuan, M., & Cai, T. (2010). A reproducing kernel Hilbert space approach to functional linear regression. The Annals of Statistics, 38(6), 3412–3444.

    Article  MathSciNet  Google Scholar 

  • Yu, P., Zhang, Z., & Du, J. (2016). A test of linearity in partial functional linear regression. Metrika, 79(8), 953–969.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Du’s work is supported by the National Natural Science Foundation of China (11971045), the Science and Technology Project of Beijing Municipal Education Commission (KM201910005015), Young Talent program of Beijing Municipal Commission of Education (CIT&TCD201904021), and China Postdoctoral Science Foundation Funded Project (2019M653502). Zhang’s work is supported by the National Natural Science Foundation of China (11771032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongzhan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

In order to provide the proofs of the theorems, we first define some notations and give some preliminary results.

Write \({\hat{V}}_k(g)=\sum _{j=1}^m\frac{\langle {\hat{C}}_{z_kX},{\hat{v}}_j\rangle \langle {\hat{v}}_j,g\rangle }{{\hat{\lambda }}_j}\), \(V_k(g)=\sum _{j=1}^{\infty }\frac{\langle C_{z_kX},v_j\rangle \langle v_j,g\rangle }{\lambda _j}\) for \(g\in L^2[0,1]\), \(\hat{\varvec{\Delta }}={\hat{C}}_{\varvec{z}}-\{{\hat{V}}_k({\hat{C}}_{z_{l}X})\}_{k,l=1,\ldots ,p}\). Then it is easy to show that \(\varvec{\Delta }\) defined in condition C6 can be expressed as \(\varvec{\Delta }=C_{\varvec{z}}-\{{V_k(C_{z_{l}X})}\}_{k,l=1,\ldots ,p}\), and that \(\hat{\varvec{\Delta }}=\frac{1}{n}\varvec{Z}^T(\varvec{I}-\varvec{P})\varvec{Z}=\frac{1}{n}{\varvec{Z}^*}^T{\varvec{Z}^*}\) if \({\hat{\lambda }}_1>\cdots>{\hat{\lambda }}_n>0\) holds. Let \(\varvec{S}^*_n=\frac{1}{\sqrt{n}}\sum _{i=1}^{n}\varvec{z}_i^*\psi _\tau ({\epsilon }_i)\), \(R_i=\int _{0}^{1}\gamma _0(t)X_i(t)dt-\varvec{U}_i^T\varvec{\gamma }_0\), \(\delta =n^{-\frac{2b-1}{2(a+2b)}}\).

The following Lemma 1, which is from He and Shao (2000, Lemma 3.2), is presented here for easy reference.

Lemma 1

Let \(\{v_i(t), t\in R^q\},\;1\le i\le n\), be independent \(R^d\)-valued random variables with \(E\{v_i(t)\}=0\) for all t. Assume that there exist \(r_1>0\) and \(r_2>0\) such that for every \(s\in R^q\), \(0<\delta ^*\le 1\), \(1\le i\le n\)

$$\begin{aligned} E\sup _{\Vert t-s\Vert \le \delta ^*}\bigg \Vert v_i(t)-v_i(s)\bigg \Vert \le n^{r_1}{\delta ^*}^{r_2}. \end{aligned}$$
(13)

Let

$$\begin{aligned} A_n(t,s)=\bigg (\sum _{i=1}^{n}E\big \Vert v_i(t)-v_i(s)\big \Vert ^2\bigg )^{1/2} \end{aligned}$$

and

$$\begin{aligned} B_n(t,s)=\bigg (\sum _{i=1}^{n}\big \Vert v_i(t)-v_i(s)\big \Vert ^2\bigg )^{1/2}. \end{aligned}$$

Then

$$\begin{aligned} \sup _{\Vert t\Vert \le n^{r_3},\Vert s\Vert \le n^{r_3}}\frac{\Big \Vert \sum _{i=1}^{n}\big (v_i(t)-v_i(s)\big )\Big \Vert }{n^{-2}+A_n(t,s)+B_n(t,s)}=O_p\Big (\big (q\log (n+q)\big )^{1/2}\Big ). \end{aligned}$$

for every \(r_3\ge 0\).

Lemma 2

Let \(u_i(\varvec{\gamma },\varvec{\gamma }_0)=\psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma })\varvec{z}_i^*-\psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma }_0)\varvec{z}_i^* -E\psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma })\varvec{z}_i^*+E\psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma }_0)\varvec{z}_i^*\). Under the regularity conditions of Theorem 1, for any \(L>0\), it has

$$\begin{aligned} \sup _{\Vert \varvec{\gamma }-\varvec{\gamma }_0\Vert \le L\delta }\frac{1}{n}\bigg \Vert \sum _{i=1}^{n}u_i(\varvec{\gamma },\varvec{\gamma }_0)\bigg \Vert =o_p(n^{-1/2}). \end{aligned}$$
(14)

Proof

We prove this lemma using Lemma 1. First, we verify the condition in (13), that is, there exist \(\nu\) and \(r>0\) such that

$$\begin{aligned} E\bigg [\sup _{\Vert \varvec{\gamma }-\varvec{\gamma }_0\Vert \le L\delta } \Vert u_i(\varvec{\gamma },\varvec{\gamma }_0)\Vert \bigg ]\le Kn^{\nu }\delta ^{r}. \end{aligned}$$
(15)

Noting that \(I(\epsilon \le \cdot )\) and \(F(\cdot )\) are monotone increasing functions, \(\psi _\tau (u)=\tau - I(u<0)\) is a step function with a jump at \(u=0\), \(\Vert \varvec{z}_i^*\Vert =O_p(1)\) and \(\Vert \varvec{U}_i\Vert =O_p(1)\), a simple calculation yields

$$\begin{aligned} \begin{aligned}&E\bigg [\sup _{\Vert \varvec{\gamma }-\varvec{\gamma }_0\Vert \le L\delta } \Vert u_i(\varvec{\gamma },\varvec{\gamma }_0)\Vert ^2 \bigg ]\\&\le E\bigg [\sup _{\Vert \varvec{\gamma }-\varvec{\gamma }_0\Vert \le L\delta }\Vert \varvec{z}_i^*\Vert ^2\Big |I(\epsilon _i\le \varvec{U}_i^T(\varvec{\gamma } -\varvec{\gamma }_0)-R_i)-I(\epsilon _i\le -R_i)\\&\quad -F\big (\varvec{U}_i^T(\varvec{\gamma }-\varvec{\gamma }_0)-R_i\big )+F(-R_i)\Big |^2\bigg ]\\&\le E\bigg [\Vert \varvec{z}_i^*\Vert ^2\Big |I(\epsilon _i\le \Vert \varvec{U}_i\Vert \delta -R_i)-I(\epsilon _i\le -R_i)\\&-F(-\Vert \varvec{U}_i\Vert \delta -R_i)+F(\Vert \varvec{U}_i\Vert \delta -R_i)\Big |^2\bigg ]\\&\le K \delta , \end{aligned} \end{aligned}$$

which implies (15).

Second, it holds that

$$\begin{aligned} \begin{aligned}&\Big \Vert \psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma })\varvec{z}_i^*-\psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma }_0)\varvec{z}_i^*\Big \Vert ^2\\&\quad \le \Vert \varvec{z}_i^*\Vert ^2 \left[ I (-R_i \le \epsilon _i< |\varvec{U}_i^T(\varvec{\gamma }-\varvec{\gamma }_0)|-R_i) + I(-|\varvec{U}_i^T(\varvec{\gamma }-\varvec{\gamma }_0)|-R_i \le \epsilon _i < -R_i)\right] ^2, \end{aligned} \end{aligned}$$

thus, we have

$$\begin{aligned} E\sum _{i=1}^{n}\Big \Vert u_i(\varvec{\gamma },\varvec{\gamma }_0)\Big \Vert ^2\le K E\sum _{i=1}^{n}\Vert \varvec{z}_i^*\Vert ^2\big |\varvec{U}_i^T(\varvec{\gamma }-\varvec{\gamma }_0)\big |, \end{aligned}$$

which implies

$$\begin{aligned} A_n=\sup _{\Vert \varvec{\gamma }-\varvec{\gamma }_0\Vert \le L\delta }\sum _{i=1}^{n}E\Big \Vert u_i(\varvec{\gamma },\varvec{\gamma }_0) \Big \Vert ^2=O(n\delta )=O\left( n^{\frac{2a+2b+1}{(2a+4b)}}\right) . \end{aligned}$$

Moreover, we can get

$$\begin{aligned} B_n=\sup _{\Vert \varvec{\gamma }-\varvec{\gamma }_0\Vert \le L\delta }\sum _{i=1}^{n}\Big \Vert u_i(\varvec{\gamma },\varvec{\gamma }_0) \Big \Vert ^2=O_p\left( n^{\frac{2a+2b+1}{(2a+4b)}}\right) . \end{aligned}$$

Invoking Lemma 1 and Condition C2(b), we have

$$\begin{aligned} \begin{aligned} \sup _{\Vert \varvec{\gamma }-\varvec{\gamma }_0\Vert \le L\delta }\frac{1}{n}\bigg \Vert \sum _{i=1}^{n}u_i(\varvec{\gamma },\varvec{\gamma }_0)\bigg \Vert&=\frac{1}{n}O_p\Big ([m\log (n)]^{1/2}(n^{-2}+A_n^{1/2}+B_n^{1/2})\Big )\\&=O_p\left( n^{-\frac{2a+6b-3}{4a+8b}}\right) (\log (n))^{1/2}=o_p(n^{-1/2}). \end{aligned} \end{aligned}$$

This completes the proof of Lemma 2. \(\square\)

Lemma 3

Under the regularity conditions of Theorem 1, for any \(L>0\), it has

$$\begin{aligned} \sup _{\Vert \varvec{\gamma }-\varvec{\gamma }_0\Vert \le L\delta }n^{-1/2}\bigg \Vert \sum _{i=1}^{n}E\psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma })\varvec{z}_i^*-E\psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma }_0)\varvec{z}_i^*\bigg \Vert =o(1). \end{aligned}$$
(16)

Proof

Since \(E\psi _\tau (\epsilon )=\tau -F(0)=0\), where F is the conditional distribution function of \(\epsilon\). Using the Taylor expansion, we have

$$\begin{aligned} \begin{aligned}&E\psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma })\varvec{z}_i^*-E\psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma }_0)\varvec{z}_i^*\\&\quad =f(0)\varvec{z}_i^*\varvec{U}_i^T(\varvec{\gamma }-\varvec{\gamma }_0)+\frac{1}{2}f'(0)\varvec{z}_i^*(\varvec{\gamma }-\varvec{\gamma }_0)^T\varvec{U}_i\varvec{U}_i^T(\varvec{\gamma }-\varvec{\gamma }_0) +o\left( \frac{1}{\sqrt{n}}\right) . \end{aligned} \end{aligned}$$

The remainder is \(o\big (1/\sqrt{n}\big )\) because \(\Vert \varvec{\gamma }-\varvec{\gamma }_0\Vert \le L\delta\) and \(b>\frac{a}{2}+1\). Then, we can obtain that

$$\begin{aligned}\begin{aligned}&\sup _{\Vert \varvec{\gamma }-\varvec{\gamma }_0\Vert \le L\delta }n^{-1/2}\bigg \Vert \sum _{i=1}^{n}E\psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma })\varvec{z}_i^*-E\psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma }_0)\varvec{z}_i^*\bigg \Vert \\&\quad =\sup _{\Vert \varvec{\gamma }-\varvec{\gamma }_0\Vert \le L\delta }n^{-1/2}\bigg \Vert bE{\varvec{Z}^*}^T\varvec{U}(\varvec{\gamma }-\varvec{\gamma }_0)+ c\sum _{i=1}^{n}E\varvec{z}_i^*(\varvec{\gamma }-\varvec{\gamma }_0)^T\varvec{U}_i\varvec{U}_i^T(\varvec{\gamma }-\varvec{\gamma }_0) \bigg \Vert +o(1) \end{aligned} \end{aligned}$$

where \(b=f(0)\) and \(c=f'(0)\). Note that \(\varvec{U}\) and \(\varvec{Z}^*\) are orthogonal to each other, that is, \(\varvec{U}^T\varvec{Z}^*=0\). Moreover,

$$\begin{aligned} \begin{aligned} \sup _{\Vert \varvec{\gamma }-\varvec{\gamma }_0\Vert \le L\delta }n^{-1/2}\bigg \Vert \sum _{i=1}^{n}E\varvec{z}_i^*(\varvec{\gamma }-\varvec{\gamma }_0)^T\varvec{U}_i\varvec{U}_i^T(\varvec{\gamma }-\varvec{\gamma }_0)\bigg \Vert = O\left( n^{-\frac{2b-a-2}{2(a+2b)}}\right) =o(1). \end{aligned} \end{aligned}$$

Thus completes the proof of Lemma 3. \(\square\)

Proof of Theorem 1

First, note that

$$\begin{aligned} \begin{aligned} |R_i|^2&\le 2 \bigg |\sum _{j=1}^{m}\langle X_i,{\hat{v}}_j-{v}_j\rangle \gamma _{0j}\Big |^2+2\Big |\sum _{j=m+1}^{ \infty }\langle X_i,v_j\rangle \gamma _{0j}\bigg |^2\\&\equiv 2\text {A}_1+2\text {A}_2. \end{aligned} \end{aligned}$$

For \(\text {A}_1\), by condition C1 and the Hölder inequality, it follows

$$\begin{aligned}\begin{aligned} \text {A}_1&=\Big |\sum _{j=1}^{m}\langle X_i,{v}_j-{\hat{v}}_j\rangle \beta _{0j}\Big |^2 \le Km\sum _{j=1}^{m}\Vert {v}_j-{\hat{v}}_j\Vert ^2|\beta _{0j}|^2\\&\le Km\sum _{j=1}^{m}O_p(n^{-1}j^{2-2b}) =O_p\left( n^{-\frac{a+4b-4}{a+2b}}\right) . \end{aligned} \end{aligned}$$

As for \(\text {A}_2\), due to

$$\begin{aligned} E\Big \{\sum _{j=m+1}^{ \infty }\langle X_i,v_j\rangle \beta _{0j}\Big \}=0, \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&\text {Var}\Big \{\sum _{j=m+1}^{ \infty }\langle X_i,{v}_j\rangle \beta _{0j}\Big \}\\&\quad =\sum _{j=m+1}^{ \infty }\lambda _j \beta _{0j}^2 \le K \sum _{j=m+1}^{ \infty }j^{-(a+2b)} =O\left( n^{-\frac{a+2b-1}{a+2b}}\right) , \end{aligned} \end{aligned}$$

one has

$$\begin{aligned} A_2=O_p\left( n^{-\frac{a+2b-1}{a+2b}}\right) . \end{aligned}$$

Taking these together, we have

$$\begin{aligned} |R_i|^2=O_p\left( n^{-\frac{a+2b-1}{a+2b}}\right) . \end{aligned}$$
(17)

According to Theorem 3.2 of Kato (2012), we can get the fact that \(|\hat{\varvec{\gamma }}-\varvec{\gamma }_0|=O_p(\delta )\). Therefore, we can derive from Lemmas 2 and  3 that

$$\begin{aligned} n^{-1/2}\bigg \Vert \sum _{i=1}^{n}\psi _\tau (Y_i-\varvec{U}_i^T\varvec{{\hat{\gamma }}})\varvec{z}_i^*-\psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma }_0)\varvec{z}_i^*\bigg \Vert =o_p(1). \end{aligned}$$
(18)

Moreover, invoking Eq. (17) and following the similar arguments used for Eq. (18), a simple calculation yields

$$\begin{aligned} \begin{aligned} n^{-1/2}\bigg \Vert \sum _{i=1}^{n}\psi _\tau (Y_i-\varvec{U}_i^T\varvec{\gamma }_0)\varvec{z}_i^*-\psi _\tau (\epsilon _i)\varvec{z}_i^*\bigg \Vert =o_p(1). \end{aligned} \end{aligned}$$
(19)

Combining (18) and (19), we have

$$\begin{aligned} n^{-1/2}\bigg \Vert \sum _{i=1}^{n}\psi _\tau (Y_i-\varvec{U}_i^T\varvec{{\hat{\gamma }}})\varvec{z}_i^*-\psi _\tau (\epsilon _i)\varvec{z}_i^*\bigg \Vert =o_p(1). \end{aligned}$$
(20)

In addition, it’s easy to see that

$$\begin{aligned} \text {Cov}(\varvec{S}_n^*)=\frac{1}{n}\sum _{i=1}^{n}\text {Cov}\bigg (\varvec{z}_i^*\psi _\tau (\epsilon _i)\bigg )=\frac{1}{{n}}\sum _{i=1}^{n}\varvec{z}_i^*{\varvec{z}_i^*}^T\tau (1-\tau )=\varvec{V}_n. \end{aligned}$$

By the central limit theorem, we have

$$\begin{aligned} \varvec{V}_n^{-1/2}\varvec{S}_n^*\overset{d}{\longrightarrow }N(0,\varvec{I}_p). \end{aligned}$$
(21)

Then, Theorem 1 follows immediately from (20) and (21). \(\square\)

Lemma 4

Define

$$\begin{aligned} {\varvec{{\bar{S}}}}_n=\frac{1}{\sqrt{n}}\sum _{i=1}^{n}\varvec{z}_i^*\psi _\tau \Big (Y_i-\varvec{U}_i^T\varvec{{\hat{\gamma }}}\Big ), \end{aligned}$$

where \(\hat{\varvec{\gamma }}=\text {argmin}_{{\varvec{\gamma }}\in R^m}\sum _{i=1}^{n}\rho _\tau (Y_i-\varvec{U}_i\varvec{\gamma }-\varvec{z}_i^T\frac{\varvec{\beta }_0}{\sqrt{n}})\). Then under \({\widetilde{H}}_A\) and Conditions C1–C7, we have

$$\begin{aligned} {\varvec{{\bar{S}}}}_n={\varvec{{S}}}_n^*+\frac{1}{n}f(0)\sum _{i=1}^{n}{\varvec{z}_i^*}\varvec{z}_i^T\varvec{\beta }_0+o_p(1). \end{aligned}$$
(22)

Proof

Since \(E\psi _\tau (\epsilon )=\tau -F(0)\) and

$$\begin{aligned} \begin{aligned}&E\big [\varvec{z}_i^*\big (\psi _\tau (Y_i-\varvec{U}_i^T\varvec{{\hat{\gamma }}})-\psi _\tau (\epsilon _i)\big )\big ]\\&\quad =E\Big [\varvec{z}_i^*\big ( \psi _\tau \big (R_i+\varvec{U}_i^T(\varvec{\gamma }_0-\varvec{{\hat{\gamma }}})+\varvec{z}_i^T\frac{\varvec{\beta }_0}{\sqrt{n}}+\epsilon _i\big )-\psi _\tau (\epsilon _i)\big )\Big ]. \end{aligned} \end{aligned}$$

Then, invoking (17) and the orthogonality between \(\varvec{U}\) and \(\varvec{Z}^*\), we have

$$\begin{aligned}\begin{aligned} E\big ({\varvec{{\bar{S}}}}_n-{\varvec{{S}}}_n^*\big )&=\frac{1}{\sqrt{n}}\sum _{i=1}^{n}\varvec{z}_i^*\Big [F\Big (R_i+\varvec{U}_i^T(\varvec{\gamma }_0-\varvec{{\hat{\gamma }}})+\varvec{z}_i^T\frac{\varvec{\beta }_0}{\sqrt{n}}\Big )-F(0)\Big ]\\&=\frac{1}{\sqrt{n}}\sum _{i=1}^{n}f(0)\varvec{z}_i^*\left( R_i+\varvec{U}_i^T(\varvec{\gamma }_0-\varvec{{\hat{\gamma }}})+\varvec{z}_i^T\frac{\varvec{\beta }_0}{\sqrt{n}}\right) +o_p(1)\\&=\frac{1}{\sqrt{n}}\sum _{i=1}^{n}f(0)\varvec{z}_i^*\varvec{z}_i^T\frac{\varvec{\beta }_0}{\sqrt{n}}+o_p(1). \end{aligned} \end{aligned}$$

This completes the proof of Lemma 4. \(\square\)

Proof of Theorem 2

According to Lemma 1 in Yu et al. (2016), we have

$$\begin{aligned} \hat{\varvec{\Delta }}\overset{p}{\longrightarrow }\varvec{\Delta }, \quad {\varvec{V}_n}\overset{p}{\longrightarrow }\tau (1-\tau )\varvec{\Delta }, \quad {\text{ as } \ \ n \rightarrow \infty }. \end{aligned}$$
(23)

Note that \({\varvec{{S}}}_n^*\) is the summation of independent entries. It follows from the Lindberg-Feller central limit theorem that

$$\begin{aligned} \varvec{V}_n^{-1/2}\varvec{S}_n^*\overset{d}{\longrightarrow }N(0,\varvec{I}_p). \end{aligned}$$
(24)

The combination of (23), (24), Lemma 4 and the definition of non-central Chi-squared distribution allow us to finish the proof of Theorem 2. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Du, J. & Zhang, Z. Testing linearity in partial functional linear quantile regression model based on regression rank scores. J. Korean Stat. Soc. 50, 214–232 (2021). https://doi.org/10.1007/s42952-020-00070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-020-00070-9

Keywords

Mathematics Subject Classification

Navigation