Skip to main content
Log in

First-Principles Research of Interaction between 3d-Transition Metal Ions and a Graphene Divacancy on the Supercomputer Base

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Density functional theory method was used to study the interaction of 3d-transition metal ions with divacancy in graphene. Calculations demonstrate that in all cases, except for that of the structure with the Sc ion, the metal is located in the divacancy center, compensating for the four dangling chemical bonds of carbon atoms. Interaction energies are close to 1000 kJ/mol. The strongest interaction was found for the Ni ion. Analysis of the local density of states of nanoparticles shows that additional energy levels appear in the energy gap between the highest occupied and lowest unoccupied levels of the graphene cluster due to the presence of a transition metal ion. In the case of clusters with Co, Ti, and V ions, the highest occupied level of the cluster lies in the region of electronic states with non-zero local density on the ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. M. Liu, R. Zhang, and W. Chen, ‘‘Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications,’’ Chem. Rev. 114, 5117–5160 (2014).

    Article  Google Scholar 

  2. J. Zhu, R. Duan, S. Zhang, N. Jiang, Y. Zhang, and J. Zhu, ‘‘The application of graphene in lithium ion battery electrode materials,’’ Springer Plus 3, 585 (2014).

    Article  Google Scholar 

  3. J. G. Yu, L. Y. Yu, H. Yang, Q. Liu, X. H. Chen, X. Y. Jiang, X. Q. Chen, and F. P. Jiao, ‘‘Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions,’’ Sci. Total Environ. 502, 70–79 (2015).

    Article  Google Scholar 

  4. H. Huang, L. Liao, X. Xu, M. Zou, F. Liu, and N. Li, ‘‘The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots (GQDs): A platform for metal ion sensing,’’ Talanta 117, 152–157 (2013).

    Article  Google Scholar 

  5. J. Ni, M. Quintana, and S. Song, ‘‘Adsorption of small gas molecules on transition metal (Fe, Ni and Co, Cu) doped graphene: A systematic DFT study,’’ Phys. E (Amsterdam, Neth.) 116, 113768 (2020).

  6. G. I. Yakovlev, I. S. Polianskich, G. N. Pervushin, G. Skripkiunas, I. A. Pudov, and E. A. Karpova, ‘‘Structural modifications of new formations in cement matrix using carbon nanotube dispersions and nanosilica,’’ Konstrukts. Mater., Nos. 1–2, 16–20 (2016).

    Google Scholar 

  7. I. S. Fatykhov, V. K. Zakharov, V. G. Kolesnikova, and T. N. Ryabova, ‘‘Response of the Yakov variety of oat with photosynthetic activity to pre-sowing seed treatment and sowing rates in the Middle Preduralie,’’ Perm. Agrar. Vestn. 24 (4), 103–109 (2018).

    Google Scholar 

  8. V. I. Kodolov, A. P. Kuznetsov, O. A. Nikolaeva, E. Sh. Shayakhmetova, L. G. Makarova, I. N. Shabanova, N. V. Khokhriakov, and E. G. Volkova, ‘‘Investigation of metal-carbon tubulenes by x-ray photoelectron spectroscopy and electron microscopy,’’ Surf. Interface Anal. 32 (1), 10–14 (2001).

    Article  Google Scholar 

  9. K. E. Whitener and P. E. Sheehan, ‘‘Graphene synthesis,’’ Diamond Relat. Mater. 46, 25–34 (2014).

    Article  Google Scholar 

  10. H. T. Wang, Q. X. Wang, Y. C. Cheng, K. Li, Y. B. Yao, Q. Zhang, C. Z. Dong, P. Wang, U. Schwingenschlogl, W. Yang, and X. X. Zhang, ‘‘Doping monolayer graphene with single atom substitutions,’’ Nano Lett. 12, 141–144 (2012).

    Article  Google Scholar 

  11. S. Ali, T. Liu, Z. Lian, D. Sheng Su, and B. Li, ‘‘The stability and reactivity of transition metal atoms supported mono and di vacancies defected carbon based materials revealed from first principles study,’’ Appl. Surf. Sci. 473, 777–784 (2019).

    Article  Google Scholar 

  12. W. Chen, Y. Tang, D. Teng, H. Chai, Z. Feng, and X. Dai, ‘‘Gas adsorption induces the electronic and magnetic properties of metal modified divacancy graphene,’’ J. Phys. Chem. Solids 136, 109151-1–109151-12 (2020).

    Google Scholar 

  13. C. Wu, I. D. Gates, ‘‘Methane activation by a single iron atom supported on graphene: Impact of substrates,’’ Mol. Catal. 469, 40–47 (2019).

    Article  Google Scholar 

  14. J. Dong, Z. Gao, W. Yang, A. Li, and X. Ding, ‘‘Adsorption characteristics of Co-anchored different graphene substrates toward \(O_{2}\) and \(NO\) molecules,’’ Appl. Surf. Sci. 480, 779–791 (2019).

    Article  Google Scholar 

  15. Y. R. Wang, L. F. Wang, and S. H. Ma, ‘‘Role of defects in tuning the adsorption of CO over graphene-supported \(Co_{13}\) cluster,’’ Appl. Surf. Sci. 481, 1080–1088 (2019).

    Article  Google Scholar 

  16. A. V. Mitin, J. Baker, and P. Pulay, ‘‘An improved 6-31G* basis set for first-row transition metals,’’ J. Chem. Phys. 118, 7775–7782 (2003).

    Article  Google Scholar 

  17. A. D. Becke, ‘‘Density-functional thermochemistry. III. The role of exact exchange,’’ J. Chem. Phys. 98, 5648–5652 (1993).

    Article  Google Scholar 

  18. N. V. Khokhriakov, V. I. Kodolov, and V. S. Karpova, ‘‘Quantum chemistry research of transition metals complexes with aromatic hydrocarbons,’’ Khim. Fiz. Mezosk. 16, 622–626 (2014).

    Google Scholar 

  19. M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong, ‘‘NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations,’’ Comput. Phys. Commun. 181, 1477 (2010).

    Article  Google Scholar 

  20. A. A. Granovsky, Firefly 8.version. http://classic.chem.msu.su/gran/firefly/index.html. Accessed 2020.

  21. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, ‘‘General atomic and molecular electronic structure system,’’ J. Comput. Chem. 14, 1347–1363 (1993).

    Article  Google Scholar 

  22. B. M. Bode and M. S. Gordon, ‘‘Macmolplt: A graphical user interface for GAMESS,’’ J. Mol. Graphics Modell. 16, 133–138 (1998).

    Article  Google Scholar 

  23. S. Simon, M. Duran, and J. J. Dannenberg, ‘‘How does basis set superposition error change the potential surfaces for hydrogen bonded dimers?’’ J. Chem. Phys. 105, 11024–11031 (1996).

    Article  Google Scholar 

  24. N. V. Khokhriakov and S. Melchor, ‘‘Quantum chemistry research of interaction between 3d-transition metal ions and a defective graphene,’’ Supercomput. Front. Innov. 5 (3), 79–82 (2018).

    Google Scholar 

  25. H. L. Zhuang, G. P. Zheng, and A. K. Soh, ‘‘Interactions between transition metals and defective carbon nanotubes,’’ Comput. Mater. Sci. 43, 823–828 (2008).

    Article  Google Scholar 

  26. S. S. Savinskii and N. V. Khokhryakov, ‘‘Characteristic features of the \(\pi\)-electron states of carbon nanotubes,’’ J. Exp. Theor. Phys. 84, 1131–1137 (1997).

    Article  Google Scholar 

  27. Vl. Voevodin, A. Antonov, D. Nikitenko, P. Shvets, S. Sobolev, I. Sidorov, K. Stefanov, Vad. Voevodin, and S. Zhumatiy, ‘‘Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community,’’ Supercomput. Front. Innov. 6 (2), 4–11 (2019).

    Google Scholar 

Download references

Funding

The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University [27].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Khokhriakov.

Additional information

(Submitted by A. V. Lapin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokhriakov, N.V. First-Principles Research of Interaction between 3d-Transition Metal Ions and a Graphene Divacancy on the Supercomputer Base. Lobachevskii J Math 42, 134–141 (2021). https://doi.org/10.1134/S1995080221010170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221010170

Keywords:

Navigation