Skip to main content

Advertisement

Log in

Continuous Anaerobic Treatment of the Aqueous Phase of Hydrothermal Liquefaction from Spirulina Using a Horizontal-Flow Anaerobic Immobilized Biomass (HAIB) Reactor

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Anaerobic digestion is a possibility for post-hydrothermal liquefaction wastewater (PHWW) treatment because this wastewater is rich in nutrients and organic compounds. However, the PHWW presents many toxic compounds. A strategy for the anaerobic treatment of toxic compounds is using biomass adhered to inert supports forming biofilms, which can offer more resistance to the microorganism and protection from such compounds. The continuous treatment of PHWW is the essential key to obtaining a sustainable hydrothermal liquefaction process. In this work, the use of immobilized biomass was evaluated for the anaerobic degradation of PHWW from Spirulina in batch assays and continuous treatment. Higher methane production potential and volatile fatty acid mass balance showed the advantages of using biomass immobilized in polyurethane foam. Continuous treatment in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor reached chemical organic demand (COD) removal efficiencies of 67% and 58% for volumetric organic load rates of 0.8 and 1.6 g COD.L−1.d−1, respectively. After 200 days of continuous treatment, Anaerobaculum and Coprothermobacter, fermentative proteolytic genera of bacteria with potential for hydrogen production, were favored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adorno, M. A. T., Hirasawa, J. S., & Varesche, M. B. A. (2014). Development and validation of two methods to quantify volatile acids (C2-C6) by GC/FID: Headspace (automatic and manual) and liquid-liquid extraction (lle). American Journal of Analytical Chemistry, 05, 406–414.

    Google Scholar 

  • Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., & Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology, 59, 927–934.

    CAS  Google Scholar 

  • APHA. (2017). Standard methods for the examination of water and wastewater. American Public Health Association. Am. Water Work. Assoc. Water Environmental, 23.

  • Aquino, S. F., Chernicharo, C. A. L., De, M., Florêncio, L., Santos, D., & Monteggia, L. O. (2007). Methodologies for determining the specific methanogenic activity (SMA) in anaerobic sludges. Engenharia Sanitária e Ambiental., 12, 192–201.

    Google Scholar 

  • Behrendt, F., Neubauer, Y., Oevermann, M., Wilmes, B., & Zobel, N. (2008). Direct liquefaction of biomass. Chemical Engineering and Technology, 31, 667–677.

    CAS  Google Scholar 

  • Ben Hania, W., Bouanane-Darenfed, A., Cayol, J. L., Ollivier, B., & Fardeau, M. L. (2016). Reclassification of Anaerobaculum mobile, Anaerobaculum thermoterrenum, Anaerobaculum hydrogeniformans as Acetomicrobium mobile comb. nov., Acetomicrobium thermoterrenum comb. nov. and Acetomicrobium hydrogeniformans comb. nov., respectively, and emendati. International Journal of Systematic and Evolutionary Microbiology, 66, 1506–1509.

    CAS  Google Scholar 

  • Ben Hania, W., Ghodbane, R., Postec, A., Brochier-Armanet, C., Hamdi, M., Fardeau, M. L., & Ollivier, B. (2011). Cultivation of the first mesophilic representative (“Mesotoga”) within the order Thermotogales. Systematic and Applied Microbiology, 34, 581–585.

    CAS  Google Scholar 

  • Bueno, B. E., Soares, L. A., Quispe-Arpasi, D., Sakamoto, I. K., Zhang, Y., Varesche, M. B. A., Ribeiro, R., & Tommaso, G. (2020). Anaerobic digestion of aqueous phase from hydrothermal liquefaction of Spirulina using biostimulated sludge. Bioresource Technology. https://doi.org/10.1016/j.biortech.2020.123552.

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336.

    CAS  Google Scholar 

  • Cattony, E. B. M., Chinalia, F. A., Ribeiro, R., Zaiat, M., Foresti, E., & Varesche, M. B. A. (2005). Ethanol and toluene removal in a horizontal-flow anaerobic immobilized biomass reactor in the presence of sulfate. Biotechnology and Bioengineering, 91, 244–253.

    CAS  Google Scholar 

  • Chen, W. T., Zhang, Y., Zhang, J., Yu, G., Schideman, L. C., Zhang, P., & Minarick, M. (2014). Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Bioresource Technology, 152, 130–139.

    CAS  Google Scholar 

  • Chen, Y., Wu, Y., Hua, D., Li, C., Harold, M. P., Wang, J., & Yang, M. (2015). Thermochemical conversion of low-lipid microalgae for the production of liquid fuels: Challenges and opportunities. RSC Advances, 5, 18673–18701.

    CAS  Google Scholar 

  • Cohen, Y. (2001). Biofiltration – the treatment of fluids by microorganisms immobilized into the filter bedding material: A review. Bioresource Technology, 77, 257–274.

    CAS  Google Scholar 

  • Costa, J. A. V., & de Morais, M. G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology, 102, 2–9.

    CAS  Google Scholar 

  • Damianovic, M. H. R. Z., Moraes, E. M., Zaiat, M., & Foresti, E. (2009). Pentachlorophenol (PCP) dechlorination in horizontal-flow anaerobic immobilized biomass (HAIB) reactors. Bioresource Technology, 100, 4361–4367.

    CAS  Google Scholar 

  • de Nardi, I. R., Ribeiro, R., Zaiat, M., & Foresti, E. (2005). Anaerobic packed-bed reactor for bioremediation of gasoline-contaminated aquifers. Process Biochemistry, 40, 587–592.

    Google Scholar 

  • DiLallo, R., Albertson, O. E. (1961) Volatile acids by direct titration. Journal of Water Pollution Control Federation, 33, 356–65. http://www.jstor.org/stable/25034391.

  • Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996–998.

    CAS  Google Scholar 

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 5, 2194–2200.

    Google Scholar 

  • Elliott, D. C., Biller, P., Ross, A. B., Schmidt, A. J., & Jones, S. B. (2015). Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresource Technology, 178, 147–156. https://doi.org/10.1016/j.biortech.2014.09.132.

  • Etchebehere, C., & Muxí, L. (2000). Thiosulfate reduction and alanine production in glucose fermentation by members of the genus Coprothermobacter. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 77, 321–327.

    CAS  Google Scholar 

  • Etchebehere, C., Pavan, M. E., Zorzópulos, J., Soubes, M., & Muxí, L. (1998). Coprothermobacter platensis sp. nov., a new anaerobic proteolytic thermophilic bacterium isolated from an anaerobic mesophilic sludge. International Journal of Systematic Bacteriology, 48, 1297–1304.

    CAS  Google Scholar 

  • Fernandez, S., Srinivas, K., Schmidt, A. J., Swita, M. S., & Ahring, B. K. (2018). Anaerobic digestion of organic fraction from hydrothermal liquefied algae wastewater byproduct. Bioresource Technology, 247, 250–258.

    CAS  Google Scholar 

  • Florencio, L., Field, J. A., & Lettinga, G. (1995). Substrate competition between methanogens a n d acetogens during the degradation of methanol in UASB reactors. Water Research, 29(3), 915–922.

    CAS  Google Scholar 

  • Gagliano, M. C., Braguglia, C. M., Petruccioli, M., & Rossetti, S. (2015). Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp. FEMS Microbiology Ecology, 91, 1–12.

    Google Scholar 

  • Gai, C., Zhang, Y., Chen, W. T., Zhou, Y., Schideman, L., Zhang, P., Tommaso, G., Kuo, C. T., & Dong, Y. (2015). Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Bioresource Technology, 184, 328–335.

    CAS  Google Scholar 

  • Gieg, L. M., Davidova, I. A., Duncan, K. E., & Suflita, J. M. (2010). Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environmental Microbiology, 12, 3074–3086.

    CAS  Google Scholar 

  • Girijan, S., & Kumar, M. (2019). Immobilized biomass systems: an approach for trace organics removal from wastewater and environmental remediation. Current Opinion in Environmental Science and Health., 12, 18–29.

    Google Scholar 

  • Griffiths, R. I., Whiteley, A. S., Anthony, G., Donnell, O., & Bailey, M. J. (2000). Rapid method for coextraction of dna and rna from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Applied and Environmental Microbiology, 66, 1–5.

    Google Scholar 

  • Gusmão, V. R., Chinalia, F. A., Sakamoto, I. K., & Varesche, M. B. A. (2007). Performance of a reactor containing denitrifying immobilized biomass in removing ethanol and aromatic hydrocarbons (BTEX) in a short operating period. Journal of Hazardous Materials, 139, 301–309.

    Google Scholar 

  • Hatamoto, M., Imachi, H., Yashiro, Y., Ohashi, A., & Harada, H. (2007). Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Applied and Environmental Microbiology, 73, 4119–4127.

    CAS  Google Scholar 

  • Jabari, L., Gannoun, H., Cayol, J. L., Hedi, A., Sakamoto, M., Falsen, E., Ohkuma, M., Hamdi, M., Fauque, G., Ollivier, B., & Fardeau, M. L. (2012). Macellibacteroides fermentans gen. nov., sp. nov., a member of the family Porphyromonadaceae isolated from an upflow anaerobic filter treating abattoir wastewaters. International Journal of Systematic Bacteriology, 62, 2522–2527.

    CAS  Google Scholar 

  • Jena, U., & Das, K. C. (2011). Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy and Fuels, 25, 5472–5482.

    CAS  Google Scholar 

  • Kawagoshi, Y., Hino, N., Fujimoto, A., Nakao, M., Fujita, Y., Sugimura, S., & Furukawa, K. (2005). Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. Journal of Bioscience and Bioengineering, 100, 524–530.

    CAS  Google Scholar 

  • Langer, S., Schropp, D., Bengelsdorf, F. R., Othman, M., & Kazda, M. (2014). Dynamics of biofilm formation during anaerobic digestion of organic waste. Anaerobe, 29, 44–51.

    CAS  Google Scholar 

  • Magoč, T., & Salzberg, S. L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics., 27, 2957–2963.

    Google Scholar 

  • Mah, T.-F. C., & O’Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9, 34–39.

    CAS  Google Scholar 

  • Maune, M. W., & Tanner, R. S. (2012). Description of Anaerobaculum hydrogeniformans sp. nov., an anaerobe that produces hydrogen from glucose, and emended description of the genus Anaerobaculum. International Journal of Systematic Bacteriology, 62, 832–838.

    CAS  Google Scholar 

  • Menes, R. J., & Muxí, L. (2002). Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and amended description of the genus Anaerobaculum. International Journal of Systematic Bacteriology, 52, 157–164.

    CAS  Google Scholar 

  • Narihiro, T., Nobu, M. K., Bocher, B. T. W., Mei, R., & Liu, W. T. (2018). Co-occurrence network analysis reveals thermodynamics-driven microbial interactions in methanogenic bioreactors. Environmental Microbiology Reports, 10, 673–685.

    CAS  Google Scholar 

  • Nazina, T. N., Shestakova, N. M., Grigor’yan, A. A., Mikhailova, E. M., Tourova, T. P., Poltaraus, A. B., Feng, C., Ni, F., & Belyaev, S. S. (2006). Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (P. R. China). Microbiology., 75, 55–65.

    CAS  Google Scholar 

  • Oliveira, C. A., Penteado, E. D., Tomita, I. N., Santos-Neto, Á. J., Zaiat, M., da Silva, B. F., & Lima Gomes, P. C. F. (2019). Removal kinetics of sulfamethazine and its transformation products formed during treatment using a horizontal flow-anaerobic immobilized biomass bioreactor. Journal of Hazardous Materials, 365, 34–43.

    CAS  Google Scholar 

  • Ollivier, B. M., Mah, R. A., & Ferguson, T. J. (1985). Emendation of the genus thermobacteroides: Thermobacteroides proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. International Journal of Systematic Bacteriology, 35, 425–428.

    CAS  Google Scholar 

  • Palatsi, J., Viñas, M., Guivernau, M., Fernandez, B., & Flotats, X. (2011). Anaerobic digestion of slaughterhouse waste: Main process limitations and microbial community interactions. Bioresource Technology, 102, 2219–2227.

    CAS  Google Scholar 

  • Pascik, I. (1990). Modified polyurethane carriers for biochemical waste water treatment. Water. Science and Techonology., 22, 33–42.

    CAS  Google Scholar 

  • Pereira, E. L., Campos, C. M. M., & Monterani, F. (2009). Effects of pH, acidity and alkalinity on the microbiota activity of an anaerobic sludge blanket reactor (UASB) treating pig manure effluents. Revista Ambiente e Água, 4(3), 157–168.

    CAS  Google Scholar 

  • Pham, M., Schideman, L., Scott, J., Rajagopalan, N., & Plewa, M. J. (2013). Chemical and biological characterization of wastewater generated from hydrothermal liquefaction of Spirulina chemical and biological characterization of wastewater generated from hydrothermal liquefaction of Spirulina. Environmental Science & Technology, 47, 2131–2138.

    CAS  Google Scholar 

  • Pind, P. F., Angelidaki, I., Ahring, B. K. (2003). Dynamics of the anaerobic process: Effects of volatile fatty acids. Biotechnology Bioengineering, 82, 791–801. https://doi.org/10.1002/bit.10628.

  • Posmanik, R., Labatut, R. A., Kim, A. H., Usack, J. G., Tester, J. W., & Angenent, L. T. (2017). Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresource Technology, 233, 134–143.

    CAS  Google Scholar 

  • Pruden, A., Sedran, M., Suidan, M., & Venosa, A. (2003). Biodegradation of MTBE and BTEX in an aerobic fluidized bed reactor. Water Science and Technology, 47, 123–128.

    CAS  Google Scholar 

  • Quispe-Arpasi, D., de Souza, R., Stablein, M., Liu, Z., Duan, N., Lu, H., Zhang, Y., de Oliveira, A. L., Ribeiro, R., & Tommaso, G. (2018). Anaerobic and photocatalytic treatments of post-hydrothermal liquefaction wastewater using H2O2. Bioresource Technology Reports., 3, 247–255.

    Google Scholar 

  • Rainey, F. A., & Stackebrandt, E. (1993). Transfer of the type species of the genus Thermobacteroides to the genus Thermoanaerobacter as Thermoanaerobacter acetoethylicus (Ben-Bassat and Zeikus 1981) comb. nov., description of Coprothermobacter gen. nov., and reclassification of Thermobacteroides. International Journal of Systematic Bacteriology, 43, 857–859.

    Google Scholar 

  • Ribeiro, R., de Nardi, I. R., Fernandes, B. S., Foresti, E., & Zaiat, M. (2013). BTEX removal in a horizontal-flow anaerobic immobilized biomass reactor under denitrifying conditions. Biodegradation., 24, 269–278.

    CAS  Google Scholar 

  • Ripley, L. E., Boyle, W. C., & Converse, J. C. (1986). Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. Journal Water Pollution., 58(5), 406–411.

    CAS  Google Scholar 

  • Roberts, G. W., Fortier, M.-O. P., Sturm, B. S. M., & Stagg-Williams, S. M. (2013). Promising pathway for algal biofuels through wastewater cultivation and hydrothermal conversion. Energy & Fuels, 27(2), 857–867.

    CAS  Google Scholar 

  • Sasaki, K., Haruta, S., Ueno, Y., Ishii, M., & Igarashi, Y. (2007). Microbial population in the biomass adhering to supporting material in a packed-bed reactor degrading organic solid waste. Applied Microbiology and Biotechnology, 75, 941–952.

    CAS  Google Scholar 

  • Si, B., Li, J., Zhu, Z., Shen, M., Lu, J., Duan, N., Zhang, Y., Liao, Q., Huang, Y., & Liu, Z. (2018). Inhibitors degradation and microbial response during continuous anaerobic conversion of hydrothermal liquefaction wastewater. The Science of the Total Environment, 630, 1124–1132.

    CAS  Google Scholar 

  • Singleton, V., Orthofer, R., & Lamuela-Raventós, R. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.

    CAS  Google Scholar 

  • Sousa, D. Z., Smidt, H., Alves, M. M., Stams, A. J. M. (2009). Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiology Ecology, 68, 257–272. https://doi.org/10.1111/j.1574-6941.2009.00680.x.

  • Tandishabo, K., Nakamura, K., Umetsu, K., & Takamizawa, K. (2012). Distribution and role of Coprothermobacter spp. in anaerobic digesters. Journal of Bioscience and Bioengineering, 114, 518–520.

    CAS  Google Scholar 

  • Tang, X., Zhang, C., Li, Z., & Yang, X. (2016). Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae. Bioresource Technology, 202, 8–14.

    CAS  Google Scholar 

  • Tatara, M., Makiuchi, T., Ueno, Y., Goto, M., & Sode, K. (2008). Methanogenesis from acetate and propionate by thermophilic down-flow anaerobic packed-bed reactor. Bioresource Technology, 99, 4786–4795.

    CAS  Google Scholar 

  • Tian, C., Li, B., Liu, Z., Zhang, Y., & Lu, H. (2014). Hydrothermal liquefaction for algal biorefinery: A critical review. Renewable and Sustainable Energy Reviews, 38, 933–950.

    CAS  Google Scholar 

  • Tommaso, G., Chen, W. T., Li, P., Schideman, L., & Zhang, Y. (2015). Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. Bioresource Technology, 178, 139–146.

    CAS  Google Scholar 

  • Tommaso, G., Domingues, M. R., Ribeiro, R., Varesche, M. B. A., Zaiat, M., & Foresti, E. (2013). Anaerobic degradation of protein: Simplified kinetic modelling and microbial dynamics. Water, Air and Soil Pollution. 224. https://doi.org/10.1007/s11270-013-1554-9.

  • Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy., 36(5), 2328–2342.

    CAS  Google Scholar 

  • Vardon, D. R., Sharma, B. K., Scott, J., Yu, G., Wang, Z., Schideman, L., Zhang, Y., & Strathmann, T. J. (2011). Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresource Technology, 102, 8295–8303.

    CAS  Google Scholar 

  • Vogel, F., Harf, J., Hug, A., & Von Rohr, P. R. (2000). The mean oxidation number of carbon (MOC) - A useful concept for describing oxidation processes. Water Research, 34, 2689–2702.

    CAS  Google Scholar 

  • Wang, J., Liang, J., Sun, L., Li, G., Temmink, H., & Rijnaarts, H. H. M. (2020). Granule-based immobilization and activity enhancement of anammox biomass via PVA/CS and PVA/CS/Fe gel beads. Bioresource Technology, 309, 123448. https://doi.org/10.1016/j.biortech.2020.123448.

    Article  CAS  Google Scholar 

  • Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261–5267.

    CAS  Google Scholar 

  • Yang, L., Si, B., Zhang, Y., Watson, J., Stablein, M., Chen, J., Zhang, Y., Zhou, X., & Chu, H. (2020). Continuous treatment of hydrothermal liquefaction wastewater in an anaerobic biofilm reactor: potential role of granular activated carbon. Journal of Cleaner Production, 276, 122836. https://doi.org/10.1016/j.jclepro.2020.122836.

    Article  CAS  Google Scholar 

  • Zaiat, M., Cabral, A. K. A., & Foresti, E. (1996). Cell wash-out and external mass transfer resistance in horizontal-flow anaerobic immobilized sludge reactor. Water Research, 30, 2435–2439.

    CAS  Google Scholar 

  • Zehnder, A. J. B., Huser, B. A., Brock, T. D., & Wuhrmann, K. (1980). Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Archives of Microbiology, 24, 1–11.

    Google Scholar 

  • Zhang, F., Zhang, W., Qian, D. K., Dai, K., van Loosdrecht, M. C. M., & Zeng, R. J. (2019). Synergetic alginate conversion by a microbial consortium of hydrolytic bacteria and methanogens. Water Research, 163, 114892. https://doi.org/10.1016/j.watres.2019.114892.

    Article  CAS  Google Scholar 

  • Zheng, M., Schideman, L. C., Tommaso, G., Chen, W. T., Zhou, Y., Nair, K., Qian, W., Zhang, Y., & Wang, K. (2017). Anaerobic digestion of wastewater generated from the hydrothermal liquefaction of Spirulina: Toxicity assessment and minimization. Energy Conversion and Management, 141, 420–428.

    CAS  Google Scholar 

  • Zhou, Y., Schideman, L., Zheng, M., Martin-Ryals, A., Li, P., Tommaso, G., & Zhang, Y. (2015). Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes. Water Science and Technology, 72, 2139–2147.

    CAS  Google Scholar 

  • Żur, J., Piński, A., Michalska, J., Hupert-Kocurek, K., Nowak, A., Wojcieszyńska, D., & Guzik, U. (2020). A whole-cell immobilization system on bacterial cellulose for the paracetamol-degrading Pseudomonas moorei KB4 strain. International Biodeterioration and Biodegradation, 149, 104919. https://doi.org/10.1016/j.ibiod.2020.104919.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the São Paulo Research Support Foundation (FAPESP, process number 2017/12486-6) for financial support. The first author is grateful to the Coordination for the Improvement of Higher Education Personnel (CAPES)-Finance Code 001 for the Ph.D. fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovana Tommaso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, B.E., Quispe-Arpasi, D., Soares, L.A. et al. Continuous Anaerobic Treatment of the Aqueous Phase of Hydrothermal Liquefaction from Spirulina Using a Horizontal-Flow Anaerobic Immobilized Biomass (HAIB) Reactor. Water Air Soil Pollut 232, 97 (2021). https://doi.org/10.1007/s11270-021-05025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05025-2

Keywords

Navigation