Skip to main content
Log in

Reduction of Airborne Bauxite Residue Dust Pollution by Enhancing the Structural Stability via the Application of Non-traditional Stabilizers

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Dust migration from bauxite residue causes serious occupational diseases and dramatic pollutions to on-site workers and the surrounding environment. In order to investigate the enhancement of mechanical properties and wind erosion behavior of non-traditional stabilizers in mitigating bauxite residue dust pollution, this paper carried out mechanical tests and wind tunnel simulations to reveal the independent and cooperative effect of mechanical properties on dust control performance and the effect of particle size on the accuracy of dust control evaluation strategy. Results illustrated the great significance of stabilizer concentration and particle size on both mechanical properties and dust control performance of treated samples. The penetration resistance was more accurate and effective in predicting dust control performance for lignosulfonate stabilizers, while unconfined compressive strength is more competitive as a key predicting index for polymer stabilizers. Particle size is critical to the evaluation of the dust control effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Ahangar, M., Izadi, M., Shahrabi, T., & Mohammadi, I. (2020). The synergistic effect of zinc acetate on the protective behavior of sodium lignosulfonate for corrosion prevention of mild steel in 3.5 wt% NaCl electrolyte: surface and electrochemical studies. Journal of Molecular Liquids, 314, 113617. https://doi.org/10.1016/j.molliq.2020.113617.

    Article  CAS  Google Scholar 

  • Alcoa. (2007). Dust management plan for the Alcoa Pinjarra bauxite residue disposal area. Retrieved from ALCOA Website: https://www.alcoa.com/australia/en/pdf/Dust_Management_Plan_FINAL_Feb_07.pdf

  • Anton, A., Rékási, M., Uzinger, N., Széplábi, G., & Makó, A. (2012). Modelling the potential effects of the Hungarian red mud disaster on soil properties. Water, Air, & Soil Pollution, 223(8), 5175–5188. https://doi.org/10.1007/s11270-012-1269-3.

    Article  CAS  Google Scholar 

  • Australian Standard. (1998). AS1289.6.2.2. In Soil strength and consolidation tests—determination of the shear strength of a soil—direct shear test using a shear box: methods of testing soils for engineering purposes: Australian Standards

  • Ayeldeen, M., Negm, A., El-Sawwaf, M., & Kitazume, M. (2017). Enhancing mechanical behaviors of collapsible soil using two biopolymers. Journal of Rock Mechanics and Geotechnical Engineering, 9(2), 329–339.

    Article  Google Scholar 

  • Chen, Q., & Indraratna, B. (2014). Shear behaviour of sandy silt treated with lignosulfonate. Canadian Geotechnical Journal, 52(8), 1180–1185.

    Article  Google Scholar 

  • Chen, Q., Indraratna, B., Carter, J., & Rujikiatkamjorn, C. (2014). A theoretical and experimental study on the behaviour of lignosulfonate-treated sandy silt. Computers and Geotechnics, 61(0), 316-327.

  • Ding, X., Xu, G., Kizil, M., Zhou, W., & Guo, X. (2018a). Lignosulfonate treating bauxite residue dust pollution: enhancement of mechanical properties and wind erosion behavior. Water, Air, Soil Pollution, 229(7), 214.

    Article  Google Scholar 

  • Ding, X., Xu, G., Zhou, W., & Kuruppu, M. (2018b). Effect of synthetic and natural polymers on reducing bauxite residue dust pollution. Environmental Technology, 1–10.

  • Ding, X., Xu, G., Liu, W. V., Yang, L., & Albijanic, B. (2019). Effect of polymer stabilizers’ viscosity on red sand structure strength and dust pollution resistance. Powder Technology, 352, 117–125. https://doi.org/10.1016/j.powtec.2019.04.046.

    Article  CAS  Google Scholar 

  • Dou, C., Li, F., & Wu, L. (2012). Soil erosion as affected by polyacrylamide application under simulated furrow irrigation with saline water. Pedosphere, 22(5), 681–688.

    Article  CAS  Google Scholar 

  • He, J., Cai, Q., & Tang, Z. (2008). Wind tunnel experimental study on the effect of PAM on soil wind erosion control. Environmental monitoring and assessment, 145(1-3), 185–193.

    Article  Google Scholar 

  • Howe, P. L., Clark, M. W., Reichelt-Brushett, A., & Johnston, M. (2011). Toxicity of raw and neutralized bauxite refinery residue liquors to the freshwater cladoceran Ceriodaphnia dubia and the marine amphipod Paracalliope australis. Environmental Toxicology and Chemistry, 30(12), 2817–2824.

    Article  CAS  Google Scholar 

  • Karol, R. H. (2003). Chemical grouting and soil stabilization, revised and expanded (Vol. 12): Crc Press.

  • Lemes, A. P., Soto-Oviedo, M. A., Mei, L. H. I., & Duran, N. (2003). Processing, chemical structure and morphology of poly(hydroxybutyrate-co-valerate)/ lignosulfonate compositeS. 4th Mercosur Congress on Process Systems Engineering, 1-6.

  • Liu, J., Shi, B., Jiang, H., Huang, H., Wang, G., & Kamai, T. (2011). Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer. Engineering Geology, 117, 114–120.

    Article  Google Scholar 

  • Manna, P. J., Mitra, T., Pramanik, N., Kavitha, V., Gnanamani, A., & Kundu, P. (2015). Potential use of curcumin loaded carboxymethylated guar gum grafted gelatin film for biomedical applications. International journal of biological macromolecules, 75, 437–446.

    Article  CAS  Google Scholar 

  • Mishra, M. M., Mishra, D. K., Mishra, P., & Behari, K. (2015). Synthesis and characterization of a novel graft copolymer of partially carboxymethylated guar gum and N-vinylformamide. Carbohydrate polymers, 115, 776–784.

    Article  CAS  Google Scholar 

  • Mudgil, D., Barak, S., & Khatkar, B. S. (2014). Guar gum: processing, properties and food applications—a review. Journal of food science and technology, 51(3), 409–418. https://doi.org/10.1007/s13197-011-0522-x.

    Article  CAS  Google Scholar 

  • Orts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007). Use of synthetic polymers and biopolymers for soil stabilization in agricultural, construction, and military applications. Journal of Materials in Civil Engineering, 19(1), 58–66.

    Article  CAS  Google Scholar 

  • Pal, S., Ghorai, S., Dash, M., Ghosh, S., & Udayabhanu, G. (2011). Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method. Journal of Hazardous Materials, 192(3), 1580–1588.

    Article  CAS  Google Scholar 

  • Pascucci, S., Belviso, C., Cavalli, R. M., Palombo, A., Pignatti, S., & Santini, F. (2012). Using imaging spectroscopy to map red mud dust waste: the Podgorica Aluminum Complex case study. Remote Sensing of Environment, 123, 139–154. https://doi.org/10.1016/j.rse.2012.03.017.

    Article  Google Scholar 

  • Power, G., Grafe, M., & Klauber, C. (2011). Bauxite residue issues: I. current management, disposal and storage practices. Hydrometallurgy, 108(1-2), 33–45.

    Article  CAS  Google Scholar 

  • Prabaharan, M. (2011). Prospective of guar gum and its derivatives as controlled drug delivery systems. International journal of biological macromolecules, 49(2), 117–124.

    Article  CAS  Google Scholar 

  • Santoni, R. L., Tingle, J. S., & Nieves, M. (2002a). Accelerated strength improvement of silty sand using nontraditional additives. TRB 2003 Annual Meeting, 1-19.

  • Santoni, R. L., Tingle, J. S., & Webster, S. L. (2002b). Stabilization of silty sand with nontraditional additives. Transportation Research Record: Journal of the Transportation Research Board, 1787(1), 61–70.

    Article  Google Scholar 

  • Santos, J., Calero, N., Guerrero, A., & Munoz, J. (2015). Relationship of rheological and microstructural properties with physical stability of potato protein-based emulsions stabilized by guar gum. Food hydrocolloids, 44, 109–114.

    Article  CAS  Google Scholar 

  • Ta’negonbadi, B., & Noorzad, R. (2017). Stabilization of clayey soil using lignosulfonate. Transportation Geotechnics, 12, 45–55. https://doi.org/10.1016/j.trgeo.2017.08.004.

    Article  Google Scholar 

  • Telysheva, G., & Shulga, G. (1995). Silicon-containing polycomplexes for protection against wind erosion of sandy soil. Journal of Agricultural Engineering Research, 62(4), 221–227.

    Article  Google Scholar 

  • Thombare, N., Jha, U., Mishra, S., & Siddiqui, M. (2016). Guar gum as a promising starting material for diverse applications: a review. International journal of biological macromolecules, 88, 361–372.

    Article  CAS  Google Scholar 

  • Tingle, J. S., Newman, J. K., Larson, S. L., Weiss, C. A., & Rushing, J. F. (2007). Stabilization mechanisms of nontraditional additives. Transportation Research Record: Journal of the Transportation Research Board, 59-67.

  • Xu, G., Ding, X., Kuruppu, M., Zhou, W., & Biswas, W. (2018). Research and application of non-traditional chemical stabilizers on bauxite residue (red sand) dust control, a review. Science of The Total Environment, 616-617, 1552–1565. https://doi.org/10.1016/j.scitotenv.2017.10.158.

    Article  CAS  Google Scholar 

  • Xue, S., Zhu, F., Kong, X., Wu, C., Huang, L., Huang, N., & Hartley, W. (2016). A review of the characterization and revegetation of bauxite residues (Red mud). Environmental Science and Pollution Research, 23(2), 1120–1132.

    Article  CAS  Google Scholar 

  • Xue, S., Li, Y., & Guo, Y. (2017). Environmental impact of bauxite residue:a comprehensive review. JOurnal of University of Chinese Academy of Sciences, 34(4), 401–412.

    Google Scholar 

  • Zandieh, A. R., & Yasrobi, S. S. (2010). Study of factors affecting the compressive strength of sandy soil stabilized with polymer. Geotechnical and Geological Engineering, 28(2), 139–145.

    Article  Google Scholar 

  • Zendehdel, M., Barati, A., Alikhani, H., & Hekmat, A. (2010). Removal of methylene blue dye from wastewater by adsorption onto semi-inpenetrating polymer network hydrogels composed of acrylamide and acrylic acid copolymer and polyvinyl alcohol. Iranian Journal of Environmental Health Science & Engineering, 7(5), 431.

    CAS  Google Scholar 

  • Zheng, X., Xu, K., Wang, Q., Shen, R., & Wang, Y. (2019). Hydrogen inhibition in wet dust removal systems by using calcium lignosulfonate (CLS). International Journal of Hydrogen Energy, 44(45), 25091–25100. https://doi.org/10.1016/j.ijhydene.2019.07.157.

    Article  CAS  Google Scholar 

Download references

Funding

This project is supported by the Excellent Innovative Project fund from China University of Mining and Technology (project no. 2014ZY004) and the Mining Education Australia Collaborative Research Grant Scheme (2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuhan Ding or Jun Deng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Xu, G., Zhang, Y. et al. Reduction of Airborne Bauxite Residue Dust Pollution by Enhancing the Structural Stability via the Application of Non-traditional Stabilizers. Water Air Soil Pollut 232, 100 (2021). https://doi.org/10.1007/s11270-021-05056-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05056-9

Keywords

Navigation