Skip to main content
Log in

Investigation of Powder Mixed EDM of Nickel-Based Superalloy Using Cobalt, Zinc and Molybdenum Powders

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Powder mixed electric discharge machining is one of the important recent trends in electric discharge machining process which successfully addresses some of the issues associated with the normal die-sinking EDM process. Since the performance of powder mixed EDM is based on work and tool material combination besides other process parameters, various research works have been reported by experimenting with different materials. This work aims to study the influence of different tool materials on powder mixed EDM of a nickel-based superalloy, Nimonic 75, along with using three different powders (zinc, Co and Mo). Nimonic 75 material is being widely used in aerospace and high-temperature applications. Besides the powders type and tool material (Cu, brass and W), the other process parameters are concentration of powder (Cp), peak current (Ip) and pulse on time (Ton). The performance measures considered in this study are material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR). The experiments were conducted based on Taguchi’s orthogonal array (L27 313). Using ANOVA, it was identified that peak current and tool material had much greater influence over MRR, TWR and SR. Zinc powder yielded highest MRR, and molybdenum powder produced good finish of the components. It was also observed that copper yielded highest MRR, tungsten experienced low TWR, and brass tool electrode produced very smooth surface finish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jeswani L M, Wear 70 (1981) 133.

    Article  CAS  Google Scholar 

  2. Ming Q Y, and He L Y, J Mater Process Technol 52 (1995) 44.

    Article  Google Scholar 

  3. Wong Y S, Lim L C, Rahuman I, and Tee W M, J Mater Process Technol 79 (1998) 30.

    Article  Google Scholar 

  4. Chow H M, Yan B H, Huang F Y, and Hung J C, J Mater Process Technol 101 (2000) 95.

    Article  Google Scholar 

  5. Tzeng Y F, and Lee C Y, Int J Adv Manuf Technol 17 (2001) 586.

    Article  Google Scholar 

  6. Zhao W S, Meng Q G, and Wang Z L, J Mater Process Technol 129 (2002) 30.

    Article  Google Scholar 

  7. Pecas P, and Henriques E A, Int J Mach Tools Manuf 43 (2003) 1465.

    Article  Google Scholar 

  8. Pecas P, and Henriques E, J Mater Process Technol 200 (2008) 250.

    Article  CAS  Google Scholar 

  9. Wu K L, Yan B H, Huang F Y, and Chen S C, Int J Mach Tools Manuf 45 (2005) 1195.

    Article  Google Scholar 

  10. Fong T Y, and Chen C F, J Mater Process Technol 170 (2005) 385.

    Article  Google Scholar 

  11. Kansal H K, Singh S, and Kumar P, J Manuf Process 9 (2007) 13.

    Article  Google Scholar 

  12. Chow H M, Yang L D, Lin C T, and Chen Y F, J Mater Process Technol 195 (2008) 160.

    Article  CAS  Google Scholar 

  13. Kung K Y, Horng J T, and Chiang K T, Int J Adv Manuf Technol 4 (2009) 95.

    Article  Google Scholar 

  14. Ojha K, Garg R K, and Sing K K, Int J Appl Sci Eng 2 (2011) 65.

    Google Scholar 

  15. Bhattacharya A, Batish A, Singh G, and Singla V K, Int J Adv Manuf Technol 61 (2012) 537.

    Article  Google Scholar 

  16. Bai X, Zhang Q-H, Yang T-Y, and Zhang J-H, Int J Adv Manuf Technol 68 (2013) 1757.

    Article  Google Scholar 

  17. Jabbaripour B, Sadeghi M H, Shabgard M R, and Faraji H, J Manuf Process 15 (2013) 56.

    Article  Google Scholar 

  18. Kumar H, Int J Adv Manuf Technol 76 (2015) 105.

    Article  Google Scholar 

  19. Singh A K, Kumar S, and Singh V P, Int J Adv Manuf Technol 77 (2015) 99.

    Article  Google Scholar 

  20. Unses E, and Cogun C, Strojniški vestnik - J Mech Eng 61 (2015) 409.

    Article  Google Scholar 

  21. Talla G, Gangopadhyay S, and Biswas C K, J Mater Eng Perform 25 (2016) 704.

    Article  CAS  Google Scholar 

  22. Long B T, Phan N H, Cuong N, and Jatti V S, Int J Adv Manuf Technol 87 (2016) 1929.

    Article  Google Scholar 

  23. Shabgard M, and Khosrozadeh B, J Manuf Process 25 (2017) 212.

    Article  Google Scholar 

  24. Ou S F, and Wang C Y, J Mater Process Technol 245 (2017) 70.

    Article  CAS  Google Scholar 

  25. Singh S, Maheshwari S, and Pandey P C, J Mater Process Technol 149 (2004) 272.

    Article  CAS  Google Scholar 

  26. Baseri H, and Sadeghian S, Int J Adv Manuf Technol 83 (2016) 519.

    Article  Google Scholar 

  27. Rathi M G, and Mane D V, Int J Sci Res Publ 4 (2014) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Jenarthanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, S., Jenarthanan, M.P. Investigation of Powder Mixed EDM of Nickel-Based Superalloy Using Cobalt, Zinc and Molybdenum Powders. Trans Indian Inst Met 74, 923–936 (2021). https://doi.org/10.1007/s12666-020-02170-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02170-w

Keywords

Navigation