Skip to main content
Log in

Generalized Sobolev–Morrey estimates for hypoelliptic operators on homogeneous groups

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

Let \({\mathbb {G}}=\big ({\mathbb {R}}^N,\circ ,\delta _{\lambda }\big )\) be a homogeneous group, Q is the homogeneous dimension of \({{\mathbb {G}}}\), \(X_0, X_1, \ldots , X_m\) be left invariant real vector fields on \({\mathbb {G}}\) and satisfy Hörmander’s rank condition on \({\mathbb {R}}^N\). Assume that \(X_1, \ldots , X_m\) \((m\le N-1)\) are homogeneous of degree one and \(X_0\) is homogeneous of degree two with respect to the family of dilations \(\big (\delta _{\lambda }\big )_{\lambda >0}\). Consider the following hypoelliptic operator with drift on \({\mathbb {G}}\)

$$\begin{aligned} {\mathcal {L}}=\sum \limits _{i,j=1}^m a_{ij} X_i X_j+a_0 X_0, \end{aligned}$$

where \((a_{ij})\) is a \(m \times m\) constant matrix satisfying the elliptic condition in \({\mathbb {R}}^m\) and \(a_0\ne 0\). In this paper, for this class of operators, we obtain the generalized Sobolev–Morrey estimates by establishing boundedness of a large class of sublinear operators \(T_{\alpha }\), \(\alpha \in [0,Q)\) generated by Calderón–Zygmund operators (\(\alpha =0\)) and generated by fractional integral operator (\(\alpha >0\)) on generalized Morrey spaces and proving interpolation results on generalized Sobolev–Morrey spaces on \({\mathbb {G}}\). The sublinear operators under consideration contain integral operators of harmonic analysis such as Hardy–Littlewood and fractional maximal operators, Calderón–Zygmund operators, fractional integral operators on homogeneous groups, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42, 765–778 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barucci, E., Polidoro, S., Vespri, V.: Some results on partial differential equations and Asian options. Math. Models Methods Appl. Sci. 11, 475–497 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonfiglioli, A., Lanconelli, E.: Lie groups related to Hörmander operators and Kolmogorov–Fokker–Planck equations. Commun. Pure Appl. Anal. 11(5), 1587–1614 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  5. Borrello, F.: On degenerate elliptic equations in Morrey spaces. Matematiche (Catania) 61(1), 13–26 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Borrello, F.: Degenerate elliptic equations and Morrey spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10(3), 989–1011 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Bramanti, M., Brandolini, L.: $L^p$ estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups. Rend. Semin. Mat. Univ. Politec. Torino 58, 389–433 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Bramanti, M., Brandolini, L.: $L^p$ estimates for nonvariational hypoelliptic operators with VMO coefficients. Trans. Am. Math. Soc. 352(2), 781–822 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bramanti, M., Brandolini, L.: Estimates of $BMO$ type for singular integrals on spaces of homogeneous type and applications to hypoelliptic PDES. Rev. Mat. Iberoam. 21(2), 511–556 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bramanti, M., Cerutti, M.C.: $L^p$ estimates for some ultraparabolic operators with discontinuous coefficients. J. Math. Anal. Appl. 200, 332–354 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Campanato, S.: Proprietá di inclusione per spazi di Morrey. Ricerche Mat. 12, 67–86 (1963)

    MathSciNet  MATH  Google Scholar 

  12. Capogna, L., Danielli, D., Pauls, S.D., Tyson, J.T.: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics, vol. 259. Birkhäuser-Verlag, Basel (2007)

    MATH  Google Scholar 

  13. Chandresekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)

    Article  MathSciNet  Google Scholar 

  14. Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases, 3rd edn. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  15. Chiarenza, F., Frasca, M.: Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. 7, 273–279 (1987)

    MathSciNet  MATH  Google Scholar 

  16. Duderstadt, J.J., Martin, W.R.: Transport Theory. Wiley, New York (1979)

    MATH  Google Scholar 

  17. Ding, Y., Yang, D., Zhou, Z.: Boundedness of sublinear operators and commutators on $L^{p,\omega }(\mathbb{R}^{n})$. Yokohama Math. J. 46, 15–27 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Eroglu, A., Guliyev, V.S., Azizov, C.V.: Characterizations for the fractional integral operators in generalized Morrey spaces on Carnot groups. Math. Notes. 102(5–6), 722–734 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Di Fazio, G., Hakim, D.I., Sawano, Y.: Elliptic equations with discontinuous coefficients in generalized Morrey spaces. Eur. J. Math. 3(3), 728–762 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Di Fazio, G., Ragusa, M.A.: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 112(2), 241–256 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13, 161–207 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton University Press, Princeton (1982)

    MATH  Google Scholar 

  23. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  24. Guliyev, V.S.: Integral operators on function spaces on the homogeneous groups and on domains in $\mathbb{R}^{n}$, [Russian Doctor’s degree dissertation]. Moscow: Steklov Institute of Mathematics, pp. 329 (1994)

  25. Guliyev, V.S.: Function spaces, integral operators and two weighted inequalities on homogeneous groups, some applications (Russian). Baku: Casioglu, pp 332 (1999)

  26. Guliyev, V.S.: Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces. J. Inequal Appl. Art. ID503948, 1–20 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Guliyev, V.S., Akbulut, A., Mammadov, Y.Y.: Boundedness of fractional maximal operator and their higher order commutators in generalized Morrey spaces on Carnot groups. Acta Math. Sci. Ser. B Engl. Ed. 33(5), 1329–1346 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guliyev, V.S.: Generalized local Morrey spaces and fractional integral operators with rough kernel. J. Math. Sci. (N. Y.) 193(2), 211–227 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guliyev, V.S., Guliyev, R.V., Omarova, M.N.: Riesz transforms associated with Schrödinger operator on vanishing generalized Morrey spaces. Appl. Comput. Math. 17(1), 56–71 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Guliyev, V.S., Ekincioglu, I., Kaya, E., Safarov, Z.: Characterizations for the fractional maximal operator and its commutators in generalized Morrey spaces on Carnot groups. Integral Transforms Spec. Funct. 30(6), 453–470 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gutierrez, C.E., Lanconelli, E.: Schauder estimates for sub-elliptic equations. J. Evol. Equ. 9, 707–726 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–161 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hou, Y., Niu, P.: Weighted Sobolev–Morrey estimates for hypoelliptic operators with drift on homogeneous groups. J. Math. Anal. Appl. 428, 1319–1338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hou, Y.X., Cui, X.W., Feng, X.J.: Global Hölder estimates for hypoelliptic operators with drift on homogeneous groups. Miskolc Math. Notes 13, 392–401 (2012)

    Article  MATH  Google Scholar 

  35. Kogoj, A.E., Lanconelli, E.: An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations. Mediterr. J. Math. 1, 51–80 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lanconelli, E., Pascucci, A., Polidoro, S.: Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance. Nonlinear Problems in Mathematical Physics and Related Topics, II, pp. 243–265. Kluwer, New York (2002)

    Chapter  MATH  Google Scholar 

  37. Lanconelli, E., Polidoro, S.: On a class of hypoelliptic evolution operators. Rend. Semin. Mat. Univ. Politec. Torino 52(1), 29–63 (1994)

    MathSciNet  MATH  Google Scholar 

  38. Lu, G., Lu, S., Yang, D.: Singular integrals and commutators on homogeneous groups. Anal. Math. 28, 103–134 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces. In: Igari, S. (ed.) Harmonic Analysis, ICM 90 Satellite Proceedings, pp. 183–189. Springer, Tokyo (1991)

    Google Scholar 

  40. Morrey, C.B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126–166 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  41. Najafov, A.M.: On some properties of the functions from Sobolev–Morrey type spaces. Cent. Eur. J. Math. 3(3), 496–507 (2005)

    MathSciNet  MATH  Google Scholar 

  42. Najafov, A.M.: Embedding theorems in the Sobolev–Morrey type spaces $S^l_{p, a,\kappa, r}W(G)$ with dominant mixed derivatives. Sib. Math. J. 47(3), 613–625 (2006)

    Google Scholar 

  43. Nakai, E.: Hardy–Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–103 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Niu, P.C., Feng, X.J.: Global Sobolev–Morrey estimates for hypoelliptic operators with drift on homogeneous group. (in Chinese). Sci. Sin. Math. 42(9), 905–920 (2012)

    Article  Google Scholar 

  45. Pascucci, A.: Hölder regularity for a Kolmogorov equation. Trans. Am. Math. Soc. 355, 901–924 (2003)

    Article  MATH  Google Scholar 

  46. Pascucci, A., Polidoro, S.: On the Harnack inequality for a class of hypoelliptic evolution operators. Trans. Am. Math. Soc. 356, 4383–4394 (2004)

    Article  MATH  Google Scholar 

  47. Peetre, J.: On the theory of space. J. Funct. Anal. 4, 71–87 (1969)

    Article  MATH  Google Scholar 

  48. Polidoro, S., Ragusa, M.A.: Sobolev–Morrey spaces related to an ultraparabolic equation. Manuscripta Math. 96, 371–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ragusa, M.A.: On weak solutions of ultraparabolic equations. Nonlinear Anal. 47(1), 503–511 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sawano, Y.: A thought on generalized Morrey spaces. J. Indonesian Math. Soc. 25(3), 210–281 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Soria, F., Weiss, G.: A remark on singular integrals and power weights. Indiana Univ. Math. J. 43, 187–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  52. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the referee(s) for careful reading the paper and useful comments. The research of author was partially supported by Grant of Cooperation Program 2532 TUBITAK - RFBR (RUSSIAN foundation for basic research) (Agreement number no. 119N455), by Grant of 1st Azerbaijan-Russia Joint Grant Competition (Agreement Number No. EIF-BGM-4-RFTF-1/2017-21/01/1-M-08) and by the RUDN University Strategic Academic Leadership Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Guliyev.

Ethics declarations

Conflict of interest

The author declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guliyev, V.S. Generalized Sobolev–Morrey estimates for hypoelliptic operators on homogeneous groups. RACSAM 115, 69 (2021). https://doi.org/10.1007/s13398-021-01009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01009-3

Keywords

Mathematics Subject Classification

Navigation